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Summary 
The recent availability of the state-wide large-scale real-time traffic database, traffic incident 

database, and road crash database has enabled more efficient traffic incident management. This 

project aims to assist traffic incident management (TIM) in Alabama by leveraging three large-

scale real-time databases maintained by ALDOT including the ALGO traffic database, CARE 

crash database, and HERE traffic database. Specially, by integrating and linking the information 

provided in the three databases, this project focuses on the four main objectives: (1) predicting the 

occurrence of crashes based on real-time traffic characteristics; (2) detecting the occurrence of the 

incidents; (3) evaluating the impact of traffic incident and identifying the key associated factors; 

(4) Identifying and mapping the high-frequency incident-crash segment of interstate in the state of 

Alabama. Additionally, this project explores the potential of using HERE speed data to improve 

the crash severity modeling. 

 

An automatic speed matrix extraction tool was developed using Python to extract the speed in 0.1 

miles×1-minute resolution in the predefined space and time coverage. The speed matrix was 

created for every incident/crash stored in the ALGO database and CARE database. Machine 

learning models including Random Forest (RF), Support Vector Machine (SVM), and Extreme 

Gradient Boosting (XGBoost) were developed and compared. Separate models were estimated for 

three major crash types: single-vehicle, rear-end, and sideswipe crashes. The model prediction 

accuracy indicated that the RF models outperform other models. Models for rear-end crashes are 

found to have greater accuracy than other models, which implies that rear-end crashes have a 

significant relationship with pre-crash traffic dynamics and are more predictable. The traffic speed 

factors that are ranked high in terms of feature importance are the speed variance and speed 

reduction before crashes. According to partial dependence plots, the rear-end crash risk is 

positively related to the speed variance and speed reductions. More results are discussed in the 

paper. Regarding automatic incident detection (AID), three types of AID algorithms are built based 

on image-like spatial-temporal speed matrices extracted from HERE using Artificial Neural 

Network (ANN) and Convolution Neural Network (CNN). The results show that incidents (e.g., 

crashes and vehicle fires) that have significant impacts on traffic can be detected and classified 

with high confidence by the algorithms developed in this project. Regarding the incident impact 

modeling, this project created and leveraged three metrics including the maximum queue length, 

time at the maximum queue length, and volume (spatiotemporal extent of a queue) to measure the 

traffic impacts. To reduce the estimation bias from any single model, this project applies five 

machine learning models to interpret nonlinear relationships by averaging the marginal effects on 

estimating the spatiotemporal impacts of traffic incidents considering traffic flow speed data, 

traffic incident features, and road environment characteristics. The model results reveal that traffic 

flow speed dynamics are strongly associated with spatiotemporal impacts of traffic incidents. The 

findings of this project provide transportation agencies with practical models, and better-informed 

planning and operational decisions and strategies needed to manage traffic incidents more 

proactively and efficiently. 

 

Key Words: Proactive Incident Management, Traffic Data, Crash Risk Prediction, Automatic 

Incident Detection, Interpretable Machine Learning, Deep Learning, Incident Impact.  

 

 

 



 

 

 

 

 

This page is deliberately left blank.



i 

 

 

Table of Contents 
 
List of Figures ................................................................................................................................ iii 
List of Tables ................................................................................................................................. iv 
1. Introduction ................................................................................................................................. 1 
2. Review of Related Work ............................................................................................................. 2 

2.1 Statewide or Regional Practices ........................................................................................ 2 
2.2 Scholarly Research ............................................................................................................ 5 

2.2.1 Crash Risk Prediction ............................................................................................ 5 
2.2.2 Incident Detection .................................................................................................. 8 
2.2.3 Incident Impact ...................................................................................................... 9 

3. Project Framework and Objectives ........................................................................................... 12 
3.1 Project Overall Framework ............................................................................................. 12 
3.2 Project Main Objectives .................................................................................................. 12 

4. Data ........................................................................................................................................... 14 
4.1 Data Sources ................................................................................................................... 14 

4.1.1 HERE Traffic Data .............................................................................................. 14 
4.1.2 ALGO Incident Data ............................................................................................ 18 
4.1.3 CARE Crash Data ................................................................................................ 21 

4.2 Data Processing ............................................................................................................... 22 
4.2.1 Data Processing for Incident Risk Prediction ...................................................... 22 
4.2.2 Data Processing for Incident Detection ............................................................... 24 
4.2.3 Data Processing for Incident Impact Estimation ................................................. 24 

5. Methodology ............................................................................................................................. 26 
5.1 Machine Learning ........................................................................................................... 26 

5.1.1 Modeling Methods ............................................................................................... 26 
5.1.2 Model Evaluation ................................................................................................. 29 
5.1.3 Model Interpretation ............................................................................................ 30 

5.2 Deep Learning ................................................................................................................. 31 
5.2.1 Artificial Neural Network .................................................................................... 31 
5.2.2 Convolutional Neural Network (CNN) ................................................................ 33 

6. Crash-risk Prediction ................................................................................................................ 35 
6.1 Variable Creation ............................................................................................................ 35 
6.2 Results of Statewide Model ............................................................................................ 37 

6.2.1 Descriptive Statistics ............................................................................................ 37 
6.2.2 All Crash Models ................................................................................................. 38 
6.2.3 Models for Single-Vehicle, Sideswipe Crash and Rear-End Crashes ................. 40 
6.2.4 Model Interpretation ............................................................................................ 41 

6.3 Results of High Crash Density Freeway Segments Model ............................................. 44 
6.3.1 High Crash-Density Segments Identification ...................................................... 44 
6.3.2 Separate Crash Risk Prediction Models ............................................................... 49 

7. Incident Detection ..................................................................................................................... 51 
7.1 Data Visualization ........................................................................................................... 51 
7.2 Results of Statewide Model ............................................................................................ 53 

7.2.1 Descriptive Statistics ............................................................................................ 53 
7.2.2 Model Results ...................................................................................................... 54 



ii 

 

 

7.3 Detectable Incidents In High-Risk Segments ................................................................. 56 
7.3.1 Detectable Incident Subtypes Identification ........................................................ 56 
7.3.2 Incident Detection Models ................................................................................... 59 

7.4 Summary and Conclusion ............................................................................................... 60 
8. Incident Impact ......................................................................................................................... 61 

8.1 Variable Creation ............................................................................................................ 61 
8.2 Descriptive Statistics ....................................................................................................... 63 
8.3 Impact Model .................................................................................................................. 64 

8.3.1 Maximum Queue Length Models ........................................................................ 64 
8.3.2 Time at Maximum Queue Length Models ........................................................... 65 
8.3.3 Spatiotemporal Impact Model .............................................................................. 66 
8.3.4 Incident Clearance Time Models ......................................................................... 67 

8.4 Summary and Conclusion ............................................................................................... 69 
9. Injury Severity Modeling .......................................................................................................... 70 

9.1 Variable Creation ............................................................................................................ 70 
9.2 Crash Severity Models .................................................................................................... 72 
9.3 Summary and Conclusion ............................................................................................... 76 

10. Summary and Recommendations ........................................................................................... 77 
Appendix A ................................................................................................................................... 79 
References ..................................................................................................................................... 84 
 

 



iii 

 

 

List of Figures 
 

FIGURE 1 Incident Response Vehicles in Florida (Florida TIM Responder, 2020b) ................... 4 
FIGURE 2 Overall Methodology Framework .............................................................................. 13 
FIGURE 3 Coverage of HERE traffic data in Alabama with sample TMC record shown .......... 14 
FIGURE 4 Selected Interstate freeways ....................................................................................... 15 
FIGURE 5 Traffic management channels (TMCs) for traffic data reporting ............................... 16 
FIGURE 6 Spatial distribution of (a) crash frequency and (b) crash density per mile ................. 16 
FIGURE 7 Spatial distribution of freeway traffic volumes (AADT) ........................................... 17 
FIGURE 8 A sample set of traffic incidents from RTMC ............................................................ 19 
FIGURE 9 Study area – I- 65 in Alabama .................................................................................... 20 
FIGURE 10 CARE online platform .............................................................................................. 21 
FIGURE 11 The framework of data linkage and processing ........................................................ 23 
FIGURE 12 Spatial-temporal speed matrix .................................................................................. 23 
FIGURE 13 Visualization of the spatial-temporal speed matrix .................................................. 24 
FIGURE 14 Random Forest Model Framework ........................................................................... 26 
FIGURE 15 Architecture of Artificial Neural Network (ANN) ................................................... 31 
FIGURE 16 A diagram of a node in NN ...................................................................................... 32 
FIGURE 17 A diagram of CNN architecture ............................................................................... 33 
FIGURE 18 Distributions of selected traffic dynamics variables ................................................ 38 
FIGURE 19 Ranking of permutation variable importance for RF, SVM, logistic regression (LR), 

and XGBoost for rear-end crashes .................................................................................... 42 
FIGURE 20 Partial dependence plots of top-six variables in the RF model for rear-end crash ... 43 
FIGURE 21 Selected freeway within the boundary of the state of Alabama ............................... 45 
FIGURE 22 Violin plot of crash density ...................................................................................... 46 
FIGURE 23 Mapping of the spatial distribution of the crash frequency ...................................... 48 
FIGURE 24 Crash prediction model accuracy by crash types and different levels of crash 

frequency. .......................................................................................................................... 49 
FIGURE 25 Spatial-temporal speed matrix for different incident subtypes ................................. 52 
FIGURE 26 ................................................................................................................................... 59 
FIGURE 27 Incident detection model accuracy by detectable incident types and different levels 

of incident frequency. ....................................................................................................... 60 
FIGURE 28 Spatiotemporal impacts for an incident (max queue length & time at max queue 

length) ............................................................................................................................... 62 
FIGURE 29 Spatiotemporal impacts for an incident (volume) ..................................................... 62 
FIGURE 30 Histogram of HERE speed variables ........................................................................ 70 
 

 

 

 

  

 



iv 

 

 

List of Tables 
 

TABLE 1 State or Region-Level Practices ..................................................................................... 2 
TABLE 2 Selected studies on crash risk prediction ....................................................................... 5 
TABLE 3Selected studies on incident impact analysis. ............................................................... 10 
TABLE 4 Sample TMC Speed Data from UA Database ............................................................. 15 
TABLE 5 Descriptive statistics for TMC length (Unit: mile) ...................................................... 17 
TABLE 6 Descriptive statistics for crashes in interstate freeways ............................................... 18 
TABLE 7 Incident subtype distribution ........................................................................................ 20 
TABLE 8 Descriptive statistics for crashes in interstate freeways ............................................... 22 
TABLE 9 Variables for the models .............................................................................................. 36 
TABLE 10 Model performance on crash risk prediction for all crash types ................................ 39 
TABLE 11Model performance on crash risk prediction for different crash types ....................... 40 
TABLE 12 Frequency of the crash subtypes ................................................................................ 44 
TABLE 13 Summary statistics for the crash frequencies count at a 1-mile level ........................ 45 
TABLE 14 Top 20 crash frequency sites of selected freeway in Alabama by crash subtypes ..... 46 
TABLE 15 Summarized traffic dynamics variables after the occurrence of different incident 

subtypes............................................................................................................................. 53 
TABLE 16 Classification labels of different models .................................................................... 54 
TABLE 17 Model performance .................................................................................................... 55 
TABLE 18 Distribution of incident subtypes ............................................................................... 56 
TABLE 19 Traffic dynamic variables for incident detection ....................................................... 57 
TABLE 20 Incident detection models for separated incident subtypes ........................................ 58 
TABLE 21 Top 20 congestion frequency sites (recorded in Algo) of selected freeway in 

Alabama ............................................................................................................................ 59 
TABLE 23 Spatiotemporal Impacts (Bold) and Traffic Dynamics-related Variables ................. 61 
TABLE 24 Descriptive Statistics of Variables ............................................................................. 63 
TABLE 25 Marginal Effects of Variables on Maximum Queue Length ...................................... 64 
TABLE 26 Marginal Effects of Variables on Time at Maximum Queue Length ........................ 66 
TABLE 27 Marginal Effects of Variables on Volume (Spatiotemporal Impacts) ........................ 67 
TABLE 28 TABLE 28Marginal Effects of Variables on Incident Clearance Time Models ........ 68 
TABLE 29 Descriptive statistics of the modeling variables. ........................................................ 70 
TABLE 29 Description of the speed variables. ............................................................................ 72 
TABLE 30 Model description from different injured severity models (all crash) ....................... 73 
TABLE 31 Estimation Results for Model 5 (all crashes). ............................................................ 73 
TABLE 32 Model description from different injured severity models (single vehicle crashes) .. 75 
TABLE 33 Estimation Results for Model 11 (single-vehicle crashes) ......................................... 75 
 



1 

 

1 

 

1. Introduction 
Traffic incidents, including crashes and disabled vehicles, have been identified as a major 

contributor to increased congestion accounting for account for approximately one-fourth of all 

traffic delays (FHWA, 2010; ALDOT, 2014). The INRIX 2018 Global Traffic Scorecard shows 

that Americans lost an average of 97 hours a year due to congestion, costing them nearly $87 

billion in 2018, an average of $1,348 per driver (INRIX, 2019). In addition to the mobility impacts, 

traffic incidents also significantly affect the safety of both motorists and emergency responders by 

increasing the chances of secondary crashes or incidents. Secondary crashes can make the traffic 

congestion worse and make it even more difficult for responders to get to and from the incident 

scene.  

 

Traffic Incident Management (TIM) is a planned and coordinated multidisciplinary process to 

detect, respond to, and clear traffic incidents so that traffic flow may be restored as safely and 

quickly as possible (FHWA, 2010). The TIM Program currently administered by the Alabama 

Department of Transportation (ALDOT) brings together agencies from local, regional, and state 

transportation and public safety communities to make Alabama highways safer for both incident 

responders and motorists by reducing the time needed to reopen travel lanes and get traffic moving 

again (ALDOT, 2014). With effective TIM, incidents can be cleared safely in less time, 

minimizing congestion and the impacts of traffic incidents on overall mobility and safety.  

 

Effective TIM requires fast and accurate incident detection that involves both the collection and 

analysis of traffic data obtained from detectors such as inductive loops, video-based technologies, 

and global position system (GPS) based vehicle tracking systems (Ren et al., 2016; D'Andrea et 

al., 2017; Sun et al., 2018). Most current TIM responses are reactive because information from 

these detectors is used to alert transportation managers and incident responders to the occurrence 

of incidents or crashes. As such, reactive TIM actions may result in unnecessary delays and 

increase the chances of secondary incidents and crashes. To minimize response delays, proactive 

TIM operations are needed. The goal of this project is to develop data-enabled tools to support 

proactive TIM operations in Alabama. Specially, this project takes advantage of three state-wise 

databases mentioned by ALDOT including the CARE crash database, HERE traffic information 

database, and ALGO incident database to create tools and models to (1) predict the risk of 

occurring specific types of incidents based on real-time traffic characteristics; (2) detecting the 

occurrence of incidents based on spatial-temporal flow information; (3) evaluate the spatial impact, 

temporal impact, and spatial-temporal impact of traffic incidents on traffic flow and identifying 

the associated factors. The outcome of this project provides a batch of tools (e.g., traffic 

characteristics extraction tool, incident risk prediction tool, etc.) and suggest assisting the TIM in 

the state of Alabama.  
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2. Review of Related Work 
Traffic Incident Management (TIM) is a process of planning and coordination to detect, respond 

to, and clear traffic incidents, and restore roadway traffic flow as safely and quickly as possible. 

The TIM is a coordinated effort that brings together agencies from local, regional, and state 

transportation and public safety communities (FHWA, 2020). Effective TIM could reduce the 

duration and impact of traffic incidents, and improve the safety of drivers, crash victims, and 

emergency responders.  

 

This project's literature review summarizes some state or regional TIM practices focusing on the 

relevant programs, systems, and technologies. Then the second part of this literature review is 

separated into three subsections to summarize the recent scholarly research on (1) crash risk 

prediction; (2) Incident detection; and (3) Incident impact analysis. This part focuses on the data 

source, data processing, model development, and performance.  

 

2.1 Statewide or Regional Practices 

In summary, most current TIM practices are a reactive process, as they rely on the information that 

is already generated from various sources, including 911 calls, or observed traffic patterns (e.g., 

speed drops). Then the transportation managers and incident responders are alerted about the 

occurrence of an incident or crash. Reactive TIM actions may result in unnecessary delays and 

increase the chances of secondary incidents and crashes.  

 

TABLE 1 summarizes the selected traffic incident management (TIM) practices at the state or 

region level with deployed techniques, platforms, and datasets. The New York City TIM program 

if formed by the New York State Department of Transportation (NYSDOT). In NYC, there are 

two important systems, Highway Emergency Local Patrol (HELP) and Citywide Incident 

Management System (CIMS), play important roles in the NYC TIM program given the unique 

incident management requirements in NYC (NCHRPTIMPM, 2020; NYC Gov, 2020). The HELP 

program provides most of the incident information to the traffic management centers (TMCs). 

These data could then be cross-referenced to the NYSDOT operator logs. The same data could be 

accessed by various agencies for further analysis (NCHRPTIMPM, 2020). The Citywide Incident 

Management System (CIMS) establishes roles and responsibilities for the New York City TIM 

program to perform and support emergency response (NYC Gov, 2020). 

 

TABLE 1 State or Region-Level Practices 

State/Region Coverages Technologies 

New York 

City, NY 
New York City, NY 

Highway Emergency Local Patrol (HELP) 

program, Citywide Incident Management 

System (CIMS) 

Los Angeles, 

CA 
Los Angeles, CA 

The Automated Traffic Surveillance and 

Control (ATSAC) Center, Los Angeles 

Regional Transportation Management Center 

(LARTMC) 

Nevada 

Northern Nevada, Southern 

Nevada, and rural TIM 

coalitions  

911 calls, CCTV Cameras, Freeway message 

signs 
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Florida 

Seven FDOT districts and 

the Florida Turnpike 

Enterprise 

911 calls, TMCs' cameras and sensors, 

Computer-aided dispatch (CAD) system, 

Public-facing mobile roadway navigation 

applications 

Delaware 

Valley 

Regional 

Planning 

Commission 

Bucks, Chester, Delaware, 

Montgomery, and 

Philadelphia in 

Pennsylvania; and 

Burlington, Camden, 

Gloucester, and Mercer in 

New Jersey 

Interactive Detour Route Mapping (IDRuM), 

Regional Integrated Multi-Modal Information 

Sharing (RIMIS) 

Wisconsin  State of Wisconsin 

CCTV Cameras, Dynamic messaging signs 

(DMS), Broadcast, WisDOT 511 Mobile 

App, Twitter, Computer-aided dispatch 

(CAD) system 

Alabama State of Alabama 
ALGO traffic platform, HERE mobility data, 

HPMS volume data, RTMC incident data 

 

The Los Angeles TIM program is led by the California Department of Transportation (Caltrans) 

to clear debris and vehicles, keep traffic flowing, and help motorists by cooperating with police, 

firefighters, and other partners (Caltrans, 2020). The Los Angeles TIM program consists of two 

centers, the Automated Traffic Surveillance and Control (ATSAC) Center and the Los Angeles 

Regional Transportation Management Center (LARTMC) (LADOT, 2020; Miyamoto, 2020). The 

ATSAC center uses real-time detector loops between and at intersections to make signal timing 

changes according to traffic conditions. The center staff is provided with graphical visualization 

of the real-time traffic condition. Traffic incident notifications can be automatically generated 

when the traffic condition becomes abnormal (e.g., traffic accident, police, or fire emergency, etc.). 

The center staff verified the situation by checking the traffic situation using cameras installed at 

major intersections (LADOT, 2020). The LARTMC is a high-tech facility dedicated to managing 

traffic on highly congested roads in the Los Angeles area. The LARTMC supports joint operations 

and serves as the center of intelligent transportation systems (ITS) and emergency response 

operations (Miyamoto, 2020).  

 

The Nevada TIM coalition covers Northern Nevada, Southern Nevada, and rural TIM coalitions. 

Nevada TIM Coalition takes advantage of 911 calls from travelers, and CCTV cameras videos to 

quickly detect highway incidents and provide timely responses to incidents (Nevada TIM 

Coalition, 2020a; Nevada TIM Coalition, 2020b).  

 

The Florida TIM program covers seven Florida Department of Transportation (FDOT) Districts 

and the Florida Turnpike system. In addition to phone calls from travelers to notify law 

enforcement agencies, the Florida TIM program makes use of CCTV cameras and various electric 

sensors to capture the traffic flow changes (such as speed drops) due to traffic incidents. Besides, 

the Florida TIM program has deployed two emerging techniques, the computer-aided dispatch 

(CAD) system and public-facing mobile roadway navigation applications (Florida TIM 

Responder, 2020a; Florida TIM Responder, 2020b), to facilitate their traffic incident management. 

It is possible that public safety agencies may notice an incident in the network before the traffic 



4 

 

4 

 

management centers (TMCs) (e.g., a phone call to the 911 center). The CAD system was designed 

to ensure timely communications between public safety agencies and TMCs to implement fast 

responses from TMCs and bolster roadway clearance (Florida TIM Responder, 2020a). Besides, 

the Florida TIM program initiated a pilot project to test the use of traveler information platforms 

such as Waze to facilitate their responses to incidents by connecting the platforms to their incident 

response vehicles (IRVs). Once an incident occurs, IRVs could receive notifications very quickly 

from Waze; and then IRVs display corresponding warning messages on its arrow board to alert 

drivers around the active incident scene (FIGURE 1). This initiative is an example of 

Infrastructure-to-Vehicle (I2V) communication to improve safety for roadway drivers and incident 

responders (Florida TIM Responder, 2020b).  

 

 
FIGURE 1 Incident Response Vehicles in Florida (Florida TIM Responder, 2020b) 

 

Delaware Valley Regional Planning Commission (DVRPC) covers a diverse nine-county region 

in Pennsylvania and New Jersey. The DVRPC has developed two applications Regional Integrated 

Multi-Modal Information Sharing (RIMIS) and Interactive Detour Route Mapping (IDRuM), to 

improve the efficiency of TIM (Delaware Valley Regional Planning Commission, 2020a; 

Delaware Valley Regional Planning Commission, 2020b). RIMIS is a web-based application 

connecting highway operation centers, TMCs, and 911 call centers in the region to enable agencies 

to receive real-time incidents information. The website consists of transportation system databases 

(e.g., roadway networks), situational information, and real-time traffic videos (Delaware Valley 

Regional Planning Commission, 2020a). In addition, IDRuM is a web-based Interactive Detour 

Route Mapping application to present responders with real-time detour route maps for all limited-

access highways (Delaware Valley Regional Planning Commission, 2020b). These two 

applications are to foster communications and information-sharing between agencies in the region.  

 

The Wisconsin Traffic Incident Management Enhancement (TIME) led by WisDOT initialed to 

cover the whole state with fostering effective TIM. The Wisconsin TIME has used CCTV cameras 

and the CAD system to provide fast detection and responses to incidents. Notably, The Wisconsin 

TIME has used the 511-mobile app and Twitter platform to allow travelers to report roadway 

incidents. Besides, the 511-mobile app, Twitter platform, broadcast, and dynamic messaging signs 

(DMS) are used to inform nearby drivers with timely incident information and roadway conditions 

around incidents (WisDOT TIME, 2017). 
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In terms of the TIM program in Alabama, The ALDOT Traffic Accident Management (TIM) 

program brings together all agencies involved in eliminating road accidents. They work together 

to provide safer incident management for responders and motorists and reduce the delay time and 

make traffic moving again (Alabama Traffic Incident Management, 2020). ALDOT recognizes the 

importance of TIM in maintaining the operational safety and efficiency of roads in the state. The 

TIM program is a comprehensive, multi-agency, multi-disciplinary plan led by the Alabama 

Department of Transportation and the Alabama Department of Public Safety, focusing on the goals 

of the three National United Goal (NUG), which are Responder safety; Safe quick clearance; 

Prompt, reliable incident communications (Alabama Traffic Incident Management, 2020). 

 

Alabama DOT (ALDOT) established the Regional Traffic Management Centers (RTMCs) with 

monitoring the traffic data and information using the ALGO website (Alabama Traffic Incident 

Management, 2020; GS&P, 2014). The ALGO website provides real-time information on cameras, 

speed sensors, and information on related infrastructure. Besides, HERE mobility data purchased 

by ALDOT provides state-wide real-time traffic flow speed information.  

 

In summary, the state-level or region-level TIM programs are multi-agency collaborated under the 

management of advanced traffic management centers (TMCs). They are often equipped with 911 

call centers and CCTV cameras and videos. Some states/regions have deployed the emerging 

computer-aided dispatch (CAD) systems to improve regular 911 call centers' response time. Other 

techniques like interactive mobile apps and web-based information sharing centers to support 

multi-agencies’ responses to incidents. Dynamic messaging signs (DMS), broadcast, and social 

media platforms are often used to inform nearby drivers and travelers with real-time traffic incident 

updates. 

 

2.2 Scholarly Research 

2.2.1 Crash Risk Prediction 

The studies that focused on crash risk prediction have generated significant insights to support 

proactive traffic incident management. Some earlier studies relied on static data (e.g., average daily 

traffic, land use type, road geometry characteristics) to identify sites with high crash risks at an 

aggregate level, e.g., the crash count at a segment with limited sight distance (Abdel-Aty & 

Radwan, 2000; Khattak et al., 2010). In recent years, researchers have taken advantage of traffic 

data generated by electronic sensors such as loop detectors and mobile devices and have developed 

a variety of models to predict the crash risk in a real-time or near-real-time manner. TABLE 2 

summarizes selected studies that used pre-crash traffic dynamic information to develop crash risk 

prediction models.  

 

TABLE 2 Selected studies on crash risk prediction 

Authors Year Study area Data source Model 

Key 

independent 

variables or 

features 

(traffic 

dynamics) 

Dependent  

variable 

or target  

features 

Hossain 

& 
2012 

11.9 km 

Shibuya 3 
Loop detector Bayesian  

Congestion 

index, speed, 
Crash risk 
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Muroma

chi 

(2012) 

and 13.5 km 

Shinjuku 4 

expressways, 

Tokyo 

network 

(model) 

and detector 

occupancy 

Qu et al. 

(2012) 
2012 

9.3-mile I-

894, 

Milwaukee, 

Wisconsin 

Loop detector 

Support  

vector 

machine 

Speed, 

occupancy, 

volume 

Rear-end 

crash risk 

Xu et al. 

(2013) 
2013 

29-mile I-

880, San 

Francisco, 

California 

Loop detector 
Sequential 

 logit model 

Vehicle 

count, speed, 

detector 

occupancy 

Crash risk at  

different 

severity 

levels 

Yu & 

Abdel-

Aty 

(2013) 

2013 
15-mile I-70, 

Colorado 

Remote Traffic 

Microwave 

Sensor 

Support  

vector 

machine 

Speed, 

occupancy, 

volume 

Crash risk 

Qu et al. 

(2011) 
2013 

9.3-mile I - 

894 

Milwaukee, 

Wisconsin 

Loop detector 

Support  

vector 

machine 

Traffic state 

and variances 

between 

adjacent lanes 

Side-wipe 

crash risk 

Wang et 

al. 

(2015) 

2015 

22-mile SR 

408, Central 

Florida 

Microwave 

Vehicle 

Detection System 

(MVDS) detector 

Multilevel  

Bayesian 

logistic  

regression  

model 

Speed, 

occupancy, 

volume 

Crash risk 

for  

weaving 

segments 

Park & 

Haghani 

(2016) 

2016 51-mile I-695 
Probe vehicle 

data 

Neural  

network model 
Speed 

Secondary 

incident  

occurrences 

risk 

Wu et al. 

(2018a) 
2018 

7-mile I-75, 

11-mile I-4, 

Tampa and 

11-mile SR-

408, Florida 

Loop and radar 

detectors; 

Microwave 

Vehicle 

Detection System 

(MVDS) sensors 

Binary  

logistic 

regression 

Speed, 

occupancy, 

volume 

Crash risk 

Wu et 

al., 

(2018b) 

2018 
Segment of I-

4 in Florida 

Remote Traffic 

Microwave 

Sensor (RTMS) 

Random  

parameters 

logistic 

regression 

Speed, 

volume 

Rear-end 

crash risk 

Cai et al. 

(2020) 
2020 

24-mile SR 

408 in 

Central 

Florida 

Microwave 

Vehicle 

Detection System 

(MVDS) detector 

Convolutional  

Neural 

Network 

(CNN) 

Speed, 

occupancy, 

volume 

Crash risk 

Huang et 

al. 

(2020) 

2020 

13.78-mile I-

235, Des 

Moines 

Roadside radar 

sensors 

Support vector 

machine 

Speed, 

occupancy, 

volume 

Crash risk 
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A large portion of relevant studies relied on the traffic loop detector data  (Qu et al., 2012; Qu et 

al., 2011; Hossain & Muromachi, 2012; Xu et al., 2013). Loop detectors play an essential role in 

traffic management and have been widely installed at intersections and on freeways to monitor the 

traffic (FHWA, 2017). The loop detector data can be used to generate common traffic flow 

characteristics such as volume, speed, and density. The loop detector data are readily available for 

researchers to explore the relationships between crash risk and traffic flow characteristics. 

However, such data are limited to sites with loop detectors and do not cover the entire road 

network. Some studies used sensor data from Microwave Vehicle Detection System (MVDS) (Cai 

et al., 2020; Wu et al., 2018a), Automated Vehicle Identification (AVI) (Basso et al., 2018), and 

Bluetooth Detectors (Hossain et al., 2019). Like loop detectors, these sensors are fixed on the road 

or roadside, and the data from these sensors have the same coverage limitation. Probe vehicle data 

are not limited to specific road segments or areas. Researchers started to use probe vehicles to 

understand the relationship between crash risk and traffic flow dynamics. The focus of the studies 

using probe vehicle data is primarily on the risk of secondary crashes instead the initial or primary 

crashes (Park & Haghani, 2016).   

 

From the model perspective, researchers have developed a variety of regression-based and also 

machine learning models (Hossain et al., 2019). The most commonly used regression modeling 

approach is the logistic model, including binary logistic regression (Wu et al., 2018a), sequential 

logistic model (Xu et al., 2013), and random parameters logistic regression (Wu et al., 2018b). 

Among the machine learning models, the Support Vector Machine (SVM) has been frequently 

used by researchers, and the SVM models produced decent accuracies (Qu et al., 2011). Recently, 

more sophisticated modeling approaches were introduced for crash risk prediction. For example, 

Cai et al. (2020) used a convolutional neural network model to predict crash risk based on a deep 

convolutional generative adversarial network (DCGAN) and achieved good performance. In most 

of these studies, the crash types were not discussed, and it is likely that their models were to predict 

the risk of all crashes. Assuming that crashes of different types could have different relationships 

with the traffic dynamics, some studies built separate models for specific crash types such as rear-

end crashes (Qu et al., 2012, Wu et al., 2018b) and sideswipe crashes (Qu et al., 2011).  

 

To the best of the authors’ knowledge, crowdsourced probe vehicle data have not been extensively 

explored by researchers regarding crash risk prediction. Using such data could overcome the 

limitation of sensor data that covers only road segments where fixed detection units are installed. 

Besides, models using crowdsourced data could uncover the relationships between traffic 

dynamics and crash risk over a diverse road or land use environment, and such models may have 

greater applicability. Using statewide crowdsourced probe vehicle data, the team attempts to 

develop machine learning models to predict crash risk for the entire freeway network in Alabama. 

Further, previous studies focused on improving the model performance, especially when the 

machine learning models are adopted. To improve the transportation systems by reducing the 

crashes, it is essential to interpret the modeling results and translated models into actionable items 

such as countermeasures to address the issues at some locations where high crash risks are 

identified.  
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2.2.2 Incident Detection  

Automatic incident detection (AID) system is an integral part of a TIM system. An AID system 

consists of two main components: a traffic detection system and an automatic incident detection 

algorithm. Traffic detection systems provide real-time traffic information such as traffic 

count/volume, speed, and travel time. Automatic incident detection algorithms are used to identify 

the traffic anomaly due to the occurrence of the traffic incident. Researchers in academia focus on 

improving the accuracy of different AID algorithms using various AID data sources. Generally, 

from the methodology perspective, these methods can be classified as comparative algorithms, 

statistical algorithms, machine learning algorithms, and deep learning algorithms. 

 

1) Comparative algorithm 

Comparative algorithms were widely used in the early stage of traffic incident detection due to the 

simple algorithm and lower computation requirement. In comparative algorithms, the occurrence 

of the incident is detected when abnormalities of the traffic flow parameters occur. The 

abnormalities are identified by comparing the pre-established thresholds with the measured traffic 

flow parameters. These traffic flow parameters (e.g., speed, occupancy rate, and volume) are often 

collected from the fixed detectors equipped on adjacent lanes. Two popular comparative 

algorithms are the California algorithm (Karim et al., 2002) and the McMaster algorithm (Hall, 

1993). The drawback of the comparative algorithm is limited detection accuracy and power 

(Samant, 2000). 

 

2) Statistical algorithms 

The different incident detection algorithm is also based on a predefined threshold, but the 

difference from the comparative algorithms is that statistical models are used to predict the traffic 

parameters based on the existing traffic parameters. The logic behind this kind of model is that the 

real value measured by the detector is compared with the predicted value forecasted by the 

statistical models. An incident is identified when the difference between the actual value and the 

predicted value is greater than a predefined threshold. For example, Ahmed and Cook (1982). 

applied autoregressive integrated moving average (ARIMA) to predict the short-term forecast of 

traffic data, and an incident is detected if the observed occupancy value lies outside the confidence 

limits of the corresponding point forecast (Ahmed & Cook, 1992). Hawas and Ahmed (2016) used 

a logit model, coupled with some predefined threshold value, to estimate the probability of incident 

status at different analysis time steps. A drawback of this method is that it is hard to consider the 

spatial and temporal variations simultaneously in the model construction.  

 

3) Machine learning algorithms 

The essence of incident detection is to recognize anomalous traffic patterns, and it can also be 

regarded as a classification problem in machine learning models. Machine learning models have 

been widely used in traffic incident detection these years. The commonly used machine learning 

models for incident detection include support vector machine (SVM), Random Forest (RF), and 

their extended models. For example, Yuan & Cheu (2003) developed and tested three different 

SVMs using data from the I-880 freeway in California. Xiao & Liu (2012) applied the multiple-

kernel learning support vector machine (MKL-SVM) in traffic incident detection. The results show 

that the MKL-SVM avoided the burden of choosing the appropriate kernel function and parameters 

and achieved better prediction accuracy than the SVM ensemble.  
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4) Deep learning algorithms 

Deep Learning may not require feature extraction manually and can directly take the spatial-

temporal traffic pattern variations as input. Recently, a researcher has introduced deep learning 

algorithms to improve traffic incident detection performance. Specifically, deep learning 

algorithms contribute to the current state-of-the-art of incident detection studies from two aspects: 

(a) generative adversarial network (GAN) is used to tackle the data imbalanced issue by expanding 

the sample size and balance datasets (Li et al., 2020); (b) convolutional neural network (CNN) is 

used to capture the spatial-temporal variation of the traffic flow parameter and identify the traffic 

pattern (e.g., incident and non-incident) with high accuracy. The results show that deep learning 

algorithms such as CNN could achieve relatively high detection accuracy compared to the machine 

learning model (Huang et al., 2020). However, from the implication aspect, a drawback of deep 

learning is that it requires high-performance GPUs and lots of data. Practitioners may select the 

proper AID algorithm based on their conditions. 

 

2.2.3 Incident Impact 

Existing studies covering research topics of traffic incidents-related spatiotemporal impacts 

concentrate on the following three aspects: 1) identifying secondary crashes (Vlahogianni et al., 

2010; Zhang and Khattak, 2011; Chung, 2013; Chen et al., 2016; Kitali et al., 2019); 2) determining 

incident impact areas (Chung and Recker, 2013; Wang et al., 2018; Ou et al., 2019; Zheng et al., 

2021); 3) predicting and forecasting the incident impact (Miller and Gupta, 2012; Pan et al., 2015; 

Liu et al., 2017; Huang et al., 2020). From the perspective of primary and/or secondary crashes, 

Vlahogianni et al. (2010) developed a Bayesian network to identify the occurrence and estimate 

the influence of secondary crashes. Results indicate that traffic conditions at the time of an incident 

and the time needed to respond to and clear the crash scene are the most significant determinants 

in defining the upstream influence area of a crash. Zhang and Khattak (2011) focused on analyzing 

time gaps and distances for secondary incidents in the same direction using 2008 incident data in 

Virginia. Chung (2013) developed a method to define the spatiotemporally different boundaries 

varying with different crash types.  

 

It should be noted that there remain significant gaps in the current understanding of how traffic 

incidents' spatiotemporal impacts are correlated with incident-related attributes and speed info. 

Specifically, two major research gaps the team aims to fill are shown as follows: 1) There is a 

limited number of works connecting incident-related factors with spatiotemporal impacts; 2) The 

existing research mainly used loop detector data to cover relatively small urban areas. The team 

aims to bridge the gaps by taking advantage of a large-scale high-resolution crowdsourced probe 

vehicle containing minute-by-minute updated traffic flow speed data covering statewide freeways 

in the state of Alabama. The team trains five machine learning models, including Categorical Naive 

Bayes (CNB), Support vector machine (SVM), Random Forest (RF), AdaBoost (Boost), and 

Neural network (NN) to untangle the relationship between contributing factors and measurements 

of traffic incidents' spatiotemporal impacts. 
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TABLE 3Selected studies on incident impact analysis. 

Literature Data Study Area Method Research Focus 

Vlahogianni 

et al., 2010 

1,746 crash 

records for 

2007 and 2008 

Attica Tollway 

(65.2-km urban 

motorway) in 

Greece 

Bayesian 

networks (BNs) 

Secondary incident detection, 

Distance of secondary to 

primary incident 

Zhang and 

Khattak, 

2011 

Nearly 80,000 

incident 

records for 

2008 

Hampton Roads, 

VA 

A deterministic 

queuing model-

based 

identification 

method 

Secondary incident detection, 

Distance of secondary to 

primary incident, Time gap of 

secondary to primary incident 

Chung, 

2013 

Around 6,200 

crashes and 52 

million traffic 

flow records 

from 2001 to 

2002 

I-5, I-405, SR-

55, SR-57, and 

SR-91, Orange 

County, CA 

Binary integer 

programming 

(BIP) 

Secondary incident detection, 

Distance of secondary to 

primary incident, Time gap of 

secondary to primary incident 

Chen et al., 

2016 

Traffic data 

from loop 

detectors and 

1,377 incident 

records for 

2013 

I-15 Northbound 

corridor (25-

mile), Salt Lake 

City, UT 

K-nearest 

neighbor 

(KNN) 

Secondary incident detection, 

Distance of secondary to 

primary incident, Time gap of 

secondary to primary incident 

Kitali et al., 

2019 

66,756 

incidents and 

speed data 

from Bluetooth 

device from 

2015 to 2017 

I-95 (35-mi), I-

10 (21-mi) , and 

I-295 (61-mi), 

Jacksonville, FL 

Static and 

dynamic 

methods 

Secondary incident detection, 

Distance of secondary to 

primary incident, Time gap of 

secondary to primary incident 

Chung and 

Recker, 

2013 

Around 6,200 

crashes and 52 

million traffic 

flow records 

from 2001 to 

2002 

I-5, I-405, SR-

55, SR-57, and 

SR-91, Orange 

County, CA 

Binary integer 

programming 

(BIP) 

Spatiotemporal region 

identification 

Wang et al., 

2018 

1 incident on 

April 16th, 

2016 

A 5-km freeway 

in the North 3rd 

Ring Road, 

Beijing, China 

Integer 

programming 

model 

Spatiotemporal region 

identification 

Ou et al., 

2019 

15 incidents 

with detector 

data 

I-5, San Diego, 

CA 

Fuzzy 

clustering 

Spatiotemporal region 

identification 

Zheng, 2021 

1 incident on 

March 17th, 

2010 

I-5, San Diego, 

CA 

Integer 

programming 

model 

Spatiotemporal region 

identification 
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Miller and 

Gupat, 2012 

28 million 

sensor and 173 

incident 

records in 

2009; 32 

million sensor 

and 244 

records in 2011 

I-5 in Los 

Angeles; US-

101 in San 

Francisco Bay 

Area, CA 

AdaBoost and 

K-nearest 

neighbor 

(KNN) 

Cost of delay or duration 

prediction 

Pan et al., 

2015 

450 million 

sensor and 

6,811 incident 

records 

I-405 and I-5 in 

Los Angeles 

County, CA 

Numerical 

modeling 

method 

Propagation behavior 

prediction 

Liu et al., 

2017 
2 incident cases 

Quyang Road, 

Shanghai, China 

GIS 

spatiotemporal 

analysis 

Propagation behavior 

prediction 

Huang et al., 

2020 

Simulated 

incident 

scenarios 

NA 

Conditional 

deep 

convolutional 

GAN (C-

DCGAN) 

model 

Propagation behavior 

prediction 

Current 

study 

17,808 incident 

records and 

statewide 

HERE traffic 

data 

All interstates in 

Alabama 

Machine 

learning-based 

model 

Spatiotemporal extent/volume 

of a queue, Understanding the 

correlations of a queue 
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3. Project Framework and Objectives 
3.1 Project Overall Framework 

The project scope is limited to the highway segments where adequate data is available. The key 

data streams include HERE traffic data, ALGO incident data, and CARE crash data as described 

in the following sections. The project scope is limited to Interstates based on the current availability 

of HERE traffic data. Besides, the research team also identified the high crash/incident occurrence 

segments and developed separate models for these sites. This project delivers a set of tools that 

can be used to support proactive incident management. In addition, the description of the steps of 

tool development are incorporated in this technical report. The tools and the report can be useful 

to a range of end users (ALDOT management, ALDOT engineers, external consultants, and others), 

particularly useful for traffic incident managers and responders. The report is also an important 

guide for the potential physical implementation of models proposed in this project for proactive 

traffic incident management. FIGURE 2 presents an overview of the project framework and 

workflow to develop and deploy the proactive traffic incident management tools. 
 

3.2 Project Main Objectives 

 

The objective of the team is to develop real-time crash risk prediction models by exploiting 

crowdsourced probe vehicle data that are not limited to a specific environment but cover diverse 

road environments. The objective of the team is to use a statewide live traffic database from HERE 

to detect freeway traffic incidents. The objective of the team is to identify the correlations of 

spatiotemporal impacts of traffic incidents by exploiting crowdsourced probe vehicle data (HERE 

live traffic speed database), pairing a dataset containing over 10,000 traffic incidents that occurred 

in 2019, covering the entire freeway network in Alabama. 

 

The overall objective of the project is to develop a set of tools to support proactive traffic 

operations and incident management on Alabama interstates. In doing so, the project utilizes three 

sets of big transportation data in Alabama: HERE traffic data, ALGO incident data, and CARE 

crash data. These data were integrated and examined to: 

• Understand the relationships between traffic flows, incidents, and crashes on Interstate 

Highway in Alabama.  

• Support the development of tools to detect and potentially forecast traffic incidents and 

crashes on Interstate in Alabama.  
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FIGURE 2 Overall Methodology Framework 
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4. Data 
4.1 Data Sources 

4.1.1 HERE Traffic Data 

To monitor congestion, ALDOT has recently purchased state-wide crowdsourced mobility data 

from HERE. This data is used in the ALGO Traffic Platform for real-time speed observation, but 

the data is also continuously collected and stored and can be used to generate performance metrics 

that provide a stronger quantitative assessment of mobility. These metrics will enable Alabama to 

follow recent FHWA guidance that supports the Fixing America’s Surface Transportation (FAST) 

Act by measuring and assessing system performance (FHWA, 2017). Across the state of Alabama, 

there are just over 10,000 traffic message channels (TMCs) that record the average speed of probe 

vehicles on the segment each minute, as shown in FIGURE 3. UA has been storing this data in an 

SQL server that has grown to several terabytes to contain data from 2017-current. A sample of this 

data is shown below in TABLE 4.  

 

 
FIGURE 3 Coverage of HERE traffic data in Alabama with sample TMC records 
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TABLE 4 Sample TMC Speed Data from UA Database 

 
 

The crowdsourced probe vehicle data used in this project is from the HERE traffic database, which 

provides live traffic information for the entire freeway network in Alabama (HERE, 2021). 

FIGURE 4 shows the freeway network in Alabama (I-459, I-59, I-65, I-85, I-10, I-20, I-20/I-59, 

I-22, I-565). The HERE traffic database provides the live speed information updated every minute 

for each traffic management channel (TMC). A TMC is a pre-defined section of the road for traffic 

data reporting (Esri, 2020). As shown in FIGURE 5, the size of TMC can range from under 0.1 

mile to a few miles. TABLE 2 shows the descriptive statistics of 635 TMCs for the Alabama 

freeway network. The total length of these TMCs is 1,976 miles, and the average length is 3.1 

miles. Note that the TMCs are specified for each direction. One TMC may be split into several 

shorter dynamic units to capture the speed information in a higher resolution when the traffic flow 

speed changes quickly within a TMC. 

 

 
FIGURE 4 Selected Interstate freeways                      
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FIGURE 5 Traffic management channels (TMCs) for traffic data reporting 

 (Note: different colors are used to distinguish different TMCs) 

 
FIGURE 6 Spatial distribution of (a) crash frequency and (b) crash density per mile  
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FIGURE 7 Spatial distribution of freeway traffic volumes (AADT) 

 

 

TABLE 5 Descriptive statistics for TMC length (Unit: mile) 

Primary  

Road 
Direction 

Number of 

TMC  

Total Length 

of TMC 
Min Max Mean Var 

I-459 NS 28 65.401 0.082 4.581 2.336 1.850 

I-59 NS 54 222.200 0.026 17.046 4.115 18.057 

I-65 NS 214 731.130 0.029 13.872 3.416 9.833 

I-85 NS 64 159.891 0.064 9.242 2.498 5.924 

I-10 WE 43 132.749 0.044 13.426 3.087 10.075 

I-20 WE 56 168.769 0.042 7.539 3.014 4.109 

I-20/I-59 WE 88 259.822 0.027 9.340 2.953 7.285 

I-22 WE 56 191.724 0.034 7.284 3.424 2.517 

I-565 WE 32 44.009 0.238 4.485 1.375 1.019 

Total 635 1,975.695 0.026 17.046 3.111 8.119 

 

The team paired the crowdsourced traffic data with the traffic crash data to extract the pre-crash 

traffic flow dynamics. The traffic crash data were obtained from the CARE crash database 

maintained by the Alabama Department of Transportation (ALDOT) (FHWA, 2020). The crashes 

that occurred in 2019 on the targeted freeways (I-459, I-59, I-65, I-85, I-10, I-20, I-20/I-59, I-22, 

I-565) within the state of Alabama were extracted from the CARE crash database. After data 

cleaning (removing crash records that miss the time or location information), the remaining 9,997 
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crash records were used to extract the pre-crash traffic information from the HERE database. 

TABLE 6 shows the descriptive statistics of sampled crashes regarding crash types. In total, the 

top three crash types - single-vehicle crashes, rear-end crashes, and sideswipe crashes account for 

35.6%, 34.7%, and 18.3% of the total crashes, respectively. Spatially, approximately 40% of the 

crashes occurred on the I-65, followed by 14.4% of the crashes that occurred on the I-20/I-59. The 

spatial distribution of interstate freeway crash frequency and crash density is shown in FIGURE 6 

(a) and (b), respectively.  

 

To reveal the impact of the diverse road environments on crash risk, the team pulled the road 

infrastructure data from the Highway Performance Monitoring System (HPMS) database. HPMS 

database provides road environment variables, including annual average daily traffic (AADT), 

number of lanes, distance to the closest upstream ramp, and land use. As shown in FIGURE 4, the 

spatial distribution of freeway traffic volume (AADT) is consistent with the spatial distribution of 

crash density.  

 

TABLE 6 Descriptive statistics for crashes in interstate freeways 

Primary 

Road 

Crash Type 

Rear-End  Sideswipe  
Single  

Vehicle Crash  
Other Total 

Freq. Percent Freq. Percent Freq. Percent Freq. Percent Freq. Percent 

I-459 383 50.4% 142 18.7% 153 20.1% 82 10.8% 760 7.6% 

I-59 118 19.9% 77 13.0% 314 53.0% 83 14.0% 592 5.9% 

I-65 1,388 35.4% 677 17.2% 1432 36.5% 429 10.9% 3926 39.3% 

I-85 360 34.1% 201 19.0% 369 34.9% 126 11.9% 1056 10.6% 

I-10 417 45.9% 171 18.8% 246 27.1% 74 8.1% 908 9.1% 

I-20 200 22.4% 164 18.4% 400 44.8% 128 14.3% 892 8.9% 

I-20/I-59 447 31.1% 331 23.1% 493 34.3% 165 11.5% 1436 14.4% 

I-22 40 18.8% 27 12.7% 116 54.5% 30 14.1% 213 2.1% 

I-565 112 52.3% 40 18.7% 35 16.4% 27 12.6% 214 2.1% 

Total 3465 34.7% 1830 18.3% 3558 35.6% 1144 11.4% 9997 100.0% 

 

4.1.2 ALGO Incident Data 

This project acquired traffic incident data from ALGO Traffic which was created by ALDOT to 

provide live traffic camera feeds, updates on Alabama roads, and access to exclusive ALDOT 

information such as message sign readouts, incident and construction information, and current road 

congestion levels. Over the past few years, ALDOT has taken a transportation systems 

management and operations (TSMO) approach to manage intelligent transportation system (ITS) 

assets and monitor congestion across their road network. Regional Traffic Management Centers 

(RTMCs) have been established in four of the five regions to monitor data and information from 

the ALGO Traffic web interface. FIGURE 8 shows a set of traffic incidents from RTMCs. The 

University of Alabama (UA) through the Center for Advanced Public Safety (CAPS) was involved 

in the development of the ALGO Traffic Platform. The team worked with ALDOT and CAPS to 

obtain the traffic incident reports that cover information including incident start and end time, road 

type, location, and incident type.  
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FIGURE 8 A sample set of traffic incidents from RTMC 

 

The incident data used in this project are from the Algo traffic incident database maintained by the 

Alabama Department of Transportation (ALDOT). The Algo traffic incident database stores all 

the reported incidents that occurred in the State of Alabama. In 2019, there were nearly 50,000 

traffic incidents stored in the Algo traffic incident database, of which 39.35% happened on 

Interstate 65 (I-65). I-65 is the busiest interstate freeway in Alabama, with a total length of 366 

miles (as shown in FIGURE 1). The team extracted all reported traffic incidents (N = 9,472) 

occurring on the Northbound I -65 in 2019.  
 

TABLE 7 shows the frequency and percentage of incidents that occurred on I-65 northbound in 

2019. The top three incident types are disabled vehicles, minor crashes, and abandoned vehicles, 

accounting for 60.30%, 11.92%, and 9.64% of all incidents, respectively. Besides, incident types 

including moderate crashes, minor crashes, and congestion also stand for a significant percentage 

(greater than 1%).  
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FIGURE 9 Study area – I- 65 in Alabama 

 

TABLE 7 Incident subtype distribution 
Incident type Frequency Percentage 

Abandoned Vehicle 913 9.64% 

Congestion 318 3.36% 

Debris 349 3.68% 

Disabled Vehicle 5,712 60.30% 

Grass Fire 23 0.24% 

HazMat Spill 5 0.05% 

Major Crash 156 1.65% 

Medical Emergency 22 0.23% 

Minor Crash 1,129 11.92% 

Moderate Crash 462 4.88% 

Overturned Vehicle 56 0.59% 

Police Activity 247 2.61% 

Signal Outage 2 0.02% 

Smoke 2 0.02% 

Structure Fire 1 0.01% 

Vehicle Fire 56 0.59% 

Wildlife in Roadway 6 0.06% 

Null value 13 0.14% 

Sum 9,472 100.00% 
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4.1.3 CARE Crash Data 

The Critical Analysis Reporting Environment (CARE) is a data analysis software package 

originally designed for problem identification and countermeasure development in traffic safety 

applications. It uses advanced analytical and statistical techniques to generate valuable information 

directly from data. A screenshot of the CARE online platform is shown in FIGURE 10. Using 

CARE’s step-by-step on-screen menus, it is easy to turn data into enlightening information. The 

project team worked with researchers and engineers of CAPS at UA to extract traffic crashes on 

Interstates and other important arterials from CARE. The key crash information for this project 

includes the location and time of crashes, crash types and injury severities, and other standard 

crash features.  

 
FIGURE 10 CARE online platform 

 

The team paired the crowdsourced traffic data with the traffic crash data to extract the pre-crash 

traffic flow dynamics. The traffic crash data were obtained from the CARE crash database 

maintained by the Alabama Department of Transportation (ALDOT) (FHWA, 2020). The crashes 

that occurred in 2019 on the targeted freeways (I-459, I-59, I-65, I-85, I-10, I-20, I-20/I-59, I-22, 

I-565) within the state of Alabama were extracted from the CARE crash database. After data 

cleaning (removing crash records that miss the time or location information), the remaining 9,997 

crash records were used to extract the pre-crash traffic information from the HERE database. 

TABLE 8 shows the descriptive statistics of sampled crashes regarding crash types. In total, the 

top three crash types - single-vehicle crashes, rear-end crashes, and sideswipe crashes account for 

35.6%, 34.7%, and 18.3% of the total crashes, respectively. Spatially, approximately 40% of the 

crashes occurred on the I-65, followed by 14.4% of the crashes that occurred on the I-20/I-59. The 

spatial distribution of interstate freeway crash frequency and crash density is shown in FIGURE 3 

(a) and (b), respectively.  
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To reveal the impact of the diverse road environments on crash risk, the team pulled the road 

infrastructure data from the Highway Performance Monitoring System (HPMS) database. HPMS 

database provides road environment variables, including annual average daily traffic (AADT), 

number of lanes, distance to the closest upstream ramp, and land use. As shown in FIGURE 4, the 

spatial distribution of freeway traffic volume (AADT) is consistent with the spatial distribution of 

crash density.  

 

TABLE 8 Descriptive statistics for crashes in interstate freeways 

Primary 

Road 

Crash Type 

Rear-End  Sideswipe  
Single  

Vehicle Crash  
Other Total 

Freq. Percent Freq. Percent Freq. Percent Freq. Percent Freq. Percent 

I-459 383 50.4% 142 18.7% 153 20.1% 82 10.8% 760 7.6% 

I-59 118 19.9% 77 13.0% 314 53.0% 83 14.0% 592 5.9% 

I-65 1,388 35.4% 677 17.2% 1432 36.5% 429 10.9% 3926 39.3% 

I-85 360 34.1% 201 19.0% 369 34.9% 126 11.9% 1056 10.6% 

I-10 417 45.9% 171 18.8% 246 27.1% 74 8.1% 908 9.1% 

I-20 200 22.4% 164 18.4% 400 44.8% 128 14.3% 892 8.9% 

I-20/I-59 447 31.1% 331 23.1% 493 34.3% 165 11.5% 1436 14.4% 

I-22 40 18.8% 27 12.7% 116 54.5% 30 14.1% 213 2.1% 

I-565 112 52.3% 40 18.7% 35 16.4% 27 12.6% 214 2.1% 

Total 3465 34.7% 1830 18.3% 3558 35.6% 1144 11.4% 9997 100.0% 

 

4.2 Data Processing 

4.2.1 Data Processing for Incident Risk Prediction 

Data used in this project are from three sources, including the HERE traffic database, the CARE 

crash database, and the HPMS highway infrastructure database. The team made a significant effort 

to link the data features and create variables for crash risk prediction. An automatic traffic 

characteristic tool was designed in this project to generate the Interstate traffic characteristics 

related to the incident time and location information. FIGURE 11 shows the framework of data 

linkage and variable creation. First, the TMCs in the HERE database were linked to the crashes 

from the CARE database according to the spatial locations of TMCs and crashes. To ensure enough 

spatial coverage for extracting the traffic data, the team linked crashes to TMCs within 5 miles 

upstream and downstream of the crash location. As a result, each crash was paired with a 10-mile 

segment for traffic data extraction from linked HERE TMCs. Second, from paired HERE TMCs 

the team extracted the traffic speed records before the crash occurrence time. The team considered 

three different pre-crash time points (10, 15, and 20 minutes before the crash) and one hour after 

the occurrence of crashes to extract the traffic information. At this point, we obtained the spatial-

temporal speed matrix for a specific incident/crash given the unique incident identification number 

in the ALGO database/crash identification number in the CARE database.  

 

To ensure the modeling results are comparable, the team extracted the traffic data from the same 

20-minute intervals. Note, that other time intervals were also attempted, and the 20-min intervals 

were selected given the model performance. The different pre-crash time points start from the 

middle of the 20-minute intervals. For instance, if a crash occurred at 8:00 am, the team extracted 

the traffic data between 7:40 am, and 8:00 am for the 10-minute pre-crash time point, between 

7:35 am and 7:55 am for the 15-minute time point, and between 7:30 am and 7:50 am for the 20-

min pre-crash time point. Then, for each crash, a spatial-temporal speed matrix was created to 
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document the speed records extracted from the HERE TMCs. FIGURE 6 shows a schematic 

diagram of part of the spatial-temporal speed matrix. The speed matrix has a resolution of 0.1 miles 

per minute. Last, based on the spatial-temporal speed matrix, variables reflecting the traffic 

characteristics before the occurrence of the incident are calculated which are presented in the later 

section. Besides the pre-crash traffic information, the road environment attributes from the HPMS 

database were matched to crashes and TMCs.  

 

  
FIGURE 11 The framework of data linkage and processing 

 

 
Notes: (1) This FIGURE only shows part of the spatial-temporal speed matrix (1.5 miles upstream and 1.5 

downstream), the whole spatial-temporal speed matrix covers traffic dynamics in 5 miles upstream and 5 miles 

downstream. (2) The red point shows the time and location of occurrence of a crash. 

FIGURE 12 Spatial-temporal speed matrix 
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4.2.2 Data Processing for Incident Detection 

Similar to 4.2.1 incident risk prediction, one major data preparation step for developing the 

automatic incident detection model is to link incidents with their corresponding post-incident 

speed dynamics together. We used the speed information extraction framework shown in FIGURE 

12. The main idea behind this framework is to extract the speed information from the HERE 

database based on the time and spatial location of the incident within predefined temporal and 

spatial ranges. The outcome of the framework is a spatial-temporal speed matrix with a resolution 

of 0.1 miles * 1 minute. In other words, the difference of data processing in this section and the 

previous section is the range of defined spatial dimension and the temporal dimension. FIGURE 

13 visualizes the spatial-temporal speed matrix for a major crash. Significant speed reduction can 

be seen after the occurrence of the crash. The black box shows the detection area, as shown in 

FIGURE 13. Because the occurrence of an incident seems to have more influence on the upstream 

traffic than the downstream traffic. Therefore, the spatial extent of the detection area in this project 

ranges from 2 miles upstream and 1 mile downstream of the incident location. Regarding the 

temporal range of the spatial-temporal matrix, it covers the traffic dynamics 15 minutes before and 

5 minutes after the incident. The speed within the area was extracted and served as the input of the 

deep learning models later.  

 

 
FIGURE 13 Visualization of the spatial-temporal speed matrix 

 

In addition to creating the spatial-temporal speed matrices for incident conditions, the team also 

created spatial-temporal speed matrices for incident-free conditions paired with the incident 

conditions. Specifically, for each incident record, one incident-free record was generated at the 

exact location and the same time of day but on a different day when there was no incident.  

 

4.2.3 Data Processing for Incident Impact Estimation 

Pairing the traffic incident data with crowdsourced traffic data using incident time and location 

information to extract the pre-incident traffic flow dynamics is a crucial step in the data processing 



25 

 

25 

 

for evaluating the incident/crash impact. From a spatial perspective, the TMCs are used to link the 

HERE database to the ALGO incident records using location information. As the length of a TMC 

segment varies across the freeway network, the team ties incidents to TMCs within a 5-mile range 

upstream and downstream of the incident location. Similarly, from a temporal standpoint, traffic 

flow speed data or traffic dynamics are retrieved based on the incident's time of occurrence. 

Therefore, a spatial-temporal speed matrix is generated for each incident to represent the extracted 

speed records from the HERE database. Lastly, road environment-related variables from the 

HPMS database are matched to all 8,178 incidents.  
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5. Methodology 
5.1 Machine Learning  

5.1.1 Modeling Methods 

Logistic Regression 

The logistic regression has been widely adopted in crash risk modeling (Hossain et al., 2019). In a 

crash risk model, the dependent variable 𝑌 is a binary variable indicating whether there was a crash 

at a site during a time period. The model can be expressed in a linear form as: 

 

ln
𝑝

1−𝑝
=  𝛼 +  𝛽𝑋                                                                                                                        (1) 

 

Where 𝑝 denotes the probability for the crash case (y = 1) and  1 − 𝑝  for the crash-free case (y = 

0);  𝛼 is the intercept term, 𝛽 is the vector of model parameter estimates for independent variables 

𝑋. 

 

Random Forest 

Random Forest (RF) is one of the most popular ensemble methods in machine learning for data 

classification. The RF is a combination of multiple decision trees, and each tree is a class prediction 

model (Breiman, 2001). The result of RF is the average prediction of all decision trees. The general 

idea behind the random forest is shown in FIGURE 7. Compared with the individual tree or class 

prediction model, the RF is expected to have lower variance and overcome the overfitting problem. 

In this project, the RF was adopted to model the complex nonlinear relationships between the crash 

risk and associated factors based on its flexible modeling structure. In this project, two 

hyperparameters, including the number of decision trees in the forest and the number of features, 

were considered for each decision tree when splitting a node, and the three-fold cross-validation 

was performed to optimize the model performance. To determine the number of features at each 

split, two commonly used methods, including the square root of the total number of variables and 

base two logarithm of the total number of variables, were tested. For the number of trees, values 

from 50 to 550 at an interval of 50 were tested. Overall, 20 possible combinations were examined 

to gain the optimized parameters. 

 

 
FIGURE 14 Random Forest Model Framework 
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Extreme Gradient Boosting  

The Extreme Gradient Boosting (XGBoost) algorithm is a scalable end-to-end tree boosting 

system created by Chen & Guestrin (2016). It can be used to solve classification problems and 

regression problems efficiently. Based on the idea of “boosting,” the algorithm combines all the 

predictions of a group of “weak” learners for developing a “strong” learner through additive 

training strategies. The XGBoost aims to optimize the value of the objective function and 

implement the machine learning algorithm within the framework of gradient boosting. The 

objective function of XGBoost is composed of a loss function and a regularization term: 

 

ℒ(𝜙) = ∑ 𝑙(𝑦𝑖̂, 𝑦𝑖)𝑛
𝑖=1 + ∑ Ω(𝑓𝑘)𝐾

𝑘=1                                                                                              (2)  

 

where 𝑙 is a differentiable convex loss function that measures the difference between the predicted 

value 𝑦𝑖̂ and the target value 𝑦𝑖; n is the number of observations in the training dataset; K is the 

number of trees to be generated; 𝑓𝑘 is an independent tree from the ensemble trees. The second 

term is the regularization term which is used to penalize the complexity of the model. It can be 

defined as: 

 

Ω(f) =  𝛾𝑇 +
1

2
𝜆 ∥ 𝜔 ∥                                                                                                                  (3) 

  

where γ is the minimum split loss reduction; λ is the regularization parameter; ω is a vector of 

weights for leaves. The detailed algorithm and computation procedures of the XGBoost can be 

found in Chen & Guestrin (2016). In this project, the learning rate, and the number of estimators 

(trees) were tuned by using a grid search method. The learning rate ranges from 0.05 to 0.3 (with 

an interval of 0.05) and the number of estimators is from 50 to 550 (with an interval of 50). 

  

Support Vector Machine 

The Support Vector Machine (SVM) approach is to find a hyperplane in N-dimensional space (N 

is the number of features) that the data points can be separated into different classes such as the 

crash and crash-free observations. The hyperplanes were constructed by the training vector 

(support vectors) that lie close to the class boundary. The hyperplane can be described using a 

linear classification function 𝑔(𝑥) = 𝑤 ∙ 𝑥 + 𝑏 , where 𝑤 is the normal vector of the hyperplane 

and 𝑏 is a variable. The optimal hyperplane is a decision boundary that maximizes the margin 

distance between the data points and the hyperplane. This optimization problem can be written as:  
 

𝑚𝑖𝑛∅(𝑤) =
1

2
‖𝑤‖2                                                                                                                       (4) 

 

subject to  

 

𝑦𝑖(𝑤 ∙ 𝑥𝑖 + 𝑏) ≥ 1   𝑖 = 1,2, … , 𝑙                                                                                                             (5) 

 

where ∅(𝑤) is an objective function of 𝑤. To construct a potentially nonlinear hyperplane between 

crash and crash-free observations, slack variables 𝜉 and a penalty factor 𝐶 are integrated into a 

modified objective function written as: 

 

𝑚𝑖𝑛∅(𝜔) =
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑙
𝑖=1                                                                                                                              (6) 
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The penalty factor 𝐶 was used and tuned to control the degree of tolerance of the misclassification. 

A larger value of 𝐶  means more penalty for misclassification. To better solve the nonlinear 

classification problem, kernel functions are often used to transform a nonlinear decision surface to 

a linear decision surface by mapping the data into high-dimensional spaces (Vapnik, 2013). The 

dot productions 𝑥𝑖 ∙ 𝑥𝑗 and 𝑥𝑖 ∙ 𝑥 are transformed by kernel function 𝐾(𝑥𝑖 , 𝑥𝑗) = (∅(𝑥𝑖) ∙ ∅(𝑥𝑗)) 

and 𝐾(𝑥𝑖 , 𝑥) = (∅(𝑥𝑖) ∙ ∅(𝑥)). After applying the Lagrange theorem, the final decision function 

can be obtained:   

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝑎𝑖

𝑙

𝑖=1

𝑦𝑖𝐾(𝑥𝑖 , 𝑥)

+ 𝑏)                                                                                                                                      (7) 

 

subject to  

 

0 ≤  𝑎𝑖 ≤ 𝐶, 𝑖 = 1,2, … , 𝑙,  
 

∑ 𝑎𝑖

𝑙

𝑖=1

𝑦𝑖 = 0 

        

The book by Bishop (2006) provides more mathematical details about the kernel functions. In this 

project, two types of commonly used kernel functions including the radial basis kernel function 

(RBF) and polynomial kernel functions (linear kernel, quadratic kernel, and cubic kernel) are 

adopted along with various combinations of SVM parameters (four values of 𝐶: 0.1, 1, 10, 100; 

three values of gamma: 1, 0.1, 0.01). Models with different kernel functions and parameters were 

trained based on the splitting ration of 8:2 (80% of the whole dataset as training dataset and 20% 

of the whole dataset as testing dataset), and the results from models with the best prediction 

performance are presented in this paper.  

 

The team needed a binary classification model to distinguish the two classes of observations: crash 

and crash-free. In binary machine learning classification models, the default threshold for 

distinguishing two classes (labeled as 0 and 1) is 0.5.  In this project, when the value of the 

predicted probability is greater or equal to 0.5, the model predicts a crash case given the traffic 

dynamics along with other road environment attributes. Otherwise, the model predicts a crash-free 

case. The choice of this threshold will influence the trade-offs of the positive error and negative 

error. Therefore, in this project, the ROC curve was used to optimize the threshold after tuning the 

above-mentioned parameters. The G-Mean was calculated for each threshold based on the X-axis 

and Y-axis of the ROC curve to balance the true positive rate and false-positive rate. 

 

G − Mean  =  𝑠𝑞𝑟𝑡(𝑡𝑝𝑟 ∗  (1 − 𝑓𝑝𝑟))                                                                                         (8) 

 

where 𝑡𝑝𝑟 denotes the true positive rate; 𝑓𝑝𝑟 denotes the false positive rate. 
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Categorical Naive Bayes (CNB) 

Naive Bayes classifier is a probabilistic machine learning model based on the Bayes theorem that 

is designed to calculate the probability of each target liable given the feature/variable sets. The 

stability, reliability, and simplicity of Naive Bayes classifier make it widely applied in text 

classification and spam filtering. The Categorical Naive Bayes (CNB) is derived from the Naive 

Bayes and is suitable for classification with discrete features, which assumes categorical 

distribution for each feature. Give a training dataset 𝑋 , for each feature 𝑖 , the probability of 

category 𝑘 in feature 𝑖 given class 𝑐 could be estimated by the following equation. 

 

𝑃(𝑥𝑖 = 𝑘|𝑦 = 𝑐; 𝛼) =
𝑁𝑖,𝑘,𝑐+𝛼

𝑁𝑐+𝛼.𝑛𝑖
                                                                                                                 (9)  

 

where, 𝑁𝑖,𝑘,𝑐 is the frequency of 𝑥𝑖 =  𝑘, which belongs to class 𝑐;  𝑁𝑐 is the frequency of 𝑐, 𝛼 is 

the Laplace smoothing parameter to handle zero frequency problem, 𝑛𝑖  is the number of all 

possible categories of feature 𝑖. The Maximum A Posterior (MAP) estimation is used to estimate 

the 𝑃(𝑥𝑖|𝑦)  and 𝑃(𝑦)  from the training dataset and the probability of prediction 𝑐  given the 

𝑥𝑖 could be calculated by the following equation. 

 

𝑃(𝑦 = 𝑐|𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 ) ∝ 𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦 = 𝑐 ) 

𝑛

𝑖=1

                                                                      (10) 

𝑦 =  𝑎𝑟𝑔 max
𝑦

𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦 = 𝑐 )

𝑛

𝑖=1

                                                                                                   (11) 

 

Adaptive Boosting (AdaBoost) 

Adaptive Boosting, AdaBoost for short, indicates another method of ensemble learning – boosting. 

The AdaBoost is a statistical classification meta-algorithm developed by Freund et al. (Freund et 

al., 1999). The AdaBoost can combine different types of machine learning algorithms (e.g., 

decision trees) to improve prediction estimations. The training process of AdaBoost follows a 

sequential process. The model will firstly train a weak learner on the training dataset, and wrong 

predictions will be highly weighted in the successive models. Following this sequential process, 

the AdaBoost can converge to a strong learner even if the individual learners can be weak. The 

team employs multi-class AdaBoosted Decision Trees (Hastie et al., 2009) to train the model, 

where the maximum number of estimators is set as 100, at which boosting is terminated. 

 

5.1.2 Model Evaluation 

To evaluate the performance of different machine learning models, the team used various metrics, 

including the Area Under the Receiver Operating Characteristics - ROC, Accuracy (ACC), 

Prediction Rate (PR), and False Alarm Rate (FAR). The selection of these metrics was based on 

previous studies that modeled the occurrence of traffic incidents (Li et al., 2017; Gakis et al., 2014). 

• ROC provides an aggregate measure of the model performance accords all classification 

thresholds. The ROC value is calculated to show the probability that a randomly chosen 

positive example (e.g., crash observation) is ranked higher than a randomly chosen 

negative example (e.g., crash-free observation). A higher AUC value indicates greater 

model prediction power.  

 



30 

 

30 

 

𝐴𝑈𝐶 =  𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑅𝑂𝐶 𝐶𝑢𝑟𝑣𝑒 × 100%                                                                            (12) 

 

• ACC represents the percentage of all correct classified samples (both crash and crash-free 

observations) to the number of total training samples. 

 

𝐴𝐶𝐶 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100%                                                                      (13) 

 

• PR is defined as the ratio of the number of correctly predicted crash samples to the number 

of total crash samples. 

 

𝑃𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑟𝑎𝑠ℎ 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑟𝑎𝑠ℎ 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100%                                                      (14)    

 

• FAR is the proportion of the crash-free samples predicted as crash samples to the number 

of total crash-free samples.  

 

𝐹𝐴𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑎𝑠ℎ−𝑓𝑟𝑒𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑐𝑟𝑎𝑠ℎ

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑟𝑎𝑠ℎ−𝑓𝑟𝑒𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100%                                                 (15) 

 

5.1.3 Model Interpretation  

Compared with traditional statistical models (e.g., logistic regression), machine learning models 

are often associated with an improved performance in terms of the model prediction accuracy. 

However, frequently referred to as a “black box” , machine learning models are usually criticized 

for lacking interpretability (Zhao et al., 2020). Researchers have undertaken significant efforts to 

open the “black box” and interpret machine learning models (Molnar, 2020). The team took 

advantage of two commonly used machine learning tools – Permutation Feature Importance and 

Partial Dependence Plot to interpret the RF, SVM, and XGBoost modeling results.  

 

Permutation Feature Importance 

Permutation Feature Importance measures the importance of a feature or variable by calculating 

the increase in a model’s prediction error after permuting the feature (Breiman, 2001; Fisher et al., 

2019). The team used the a Python package called sklearn.inspection to compute the importance 

scores for feature variables (Fabian et al., 2011). The main computation steps include (Molnar, 

2020):  

1. Estimate the original model error 𝑒𝑜𝑟𝑖𝑔 = 𝐿(𝑦, 𝑓(𝑋)) (e.g., mean squared error); 

2. For each feature (𝑖 = 1, 2, 3, … , 𝑛), create a feature matrix 𝑋𝑝𝑒𝑟𝑚 by permuting feature 𝑖 
in the data 𝑋; 

3. Estimate error 𝑒𝑝𝑒𝑟𝑚 = 𝐿(𝑌, 𝑓(𝑋𝑝𝑒𝑟𝑚)) based on the predictions of the permuted data; 

4. Calculate permutation feature importance 𝐹𝐼𝑖 =  𝑒𝑝𝑒𝑟𝑚/𝑒𝑜𝑟𝑖𝑔; 

5. Sort features by descending 𝐹𝐼. 

 

Partial Dependence Plot 

Permutation Feature Importance shows the importance of variables and offers limited information 

regarding the direction and magnitude of relationships between factors. To reveal the detailed 

relationship between crash risk and traffic dynamic variables, the team generated Partial 

Dependence Plots (PDPs) based on modeling results. The PDPs can be used to show how the crash 
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risk or the probability of having a crash would increase or decrease with the changes in the input 

feature or independent variable. The same Python package sklearn.inspection was used to calculate 

partial dependence values.  

 

5.2 Deep Learning 

In previous research, various statistical models (e.g., ARIMA models, logistic regression models, 

etc.) and machining learning models (e.g., support vector machine, random forest model etc.) have 

been used to detect the occurrence of incidents automatically. The input features of these models 

are usually summarized traffic flow variables (e.g., mean speed, mean volume) created based on 

detector data. This paper uses real-time speed information provided by probe vehicle data to build 

AID models to detect the occurrence of incidents. Unlike detector-based data only available with 

road detectors, probe vehicle data can provide speed information covering a wide spatial range. 

However, one significant drawback of probe vehicle data is that it cannot provide direct volume 

information and occupancy information. To avoid information loss, high-resolution spatial-

temporal speed matrices are fed into the deep learning models directly without creating 

summarized speed dynamic variables (e.g., speed mean, speed variance, etc.). Two deep learning 

models, including Artificial Neural Network (ANN) and Convolution Neural Network (CNN) are 

used to detect the occurrence of the incident. The occurrence of different incident sub-types may 

have different impacts on the traffic dynamics. In other words, by classifying different traffic 

patterns, not only the occurrence of an incident can be detected, but also the incident subtype might 

be identified. Therefore, two kinds of models are developed in this project, including general AID 

models and incident subtype classification models.  

  

5.2.1 Artificial Neural Network 

Artificial Neural Networks (ANN) are algorithms functioning like the brain and can be used to 

model complicated patterns and make predictions. A typical ANN comprises three parts in its 

structure: one input layer, one or more hidden layers, and one output layer. As shown in FIGURE 

15, a layer contains several nodes (also called neurons), and layers beside each other are fully 

connected. In other words, every node in one layer is connected to every other node in the next 

layer. The key components/technologies in ANN are summarized below. 

 

 
FIGURE 15 Architecture of Artificial Neural Network (ANN) 
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Node 

Each given node in a hidden layer or an output layer can be served as a computation unit. As shown 

in FIGURE 16, a node first takes the summation of weighted inputs and bias and passes it through 

a non-linear activation function.  

 

 
FIGURE 16 A diagram of a node in NN 

 

The mathematic equation for node h can be expressed as  

 

𝑦𝑖 = 𝑓(𝑤1𝑥1 + 𝑤2𝑥2  + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑏)                                                                                   (16) 

 

where, 𝑤1, 𝑤2, … , 𝑤𝑛  are weights for input 𝑥1, 𝑥2, … , 𝑥𝑛, respectively; b is the bias for node h; f() 

is the non-linear activation function. The non-linear activation function takes any values as input 

and outputs a value in the range of 0 to 1. For classification problems, the commonly used 

activation functions include Sigmoid functions (shown in Equation 17), Tanh function (shown in 

Equation 18), Relu function (shown in Equation 19) and Exponential Linear Units (ELUs) 

Function (shown in Equation 20).  

 

𝑓(𝑥) =  
1

1+𝑒−𝑥                                                                                                 (17) 

 

𝑓(𝑥) =  
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥                                                                                              (18) 

 

𝑓(𝑥) =  max (0, 𝑥)                                                                                         (19) 

 

𝑓(𝑥) =  {
𝑥                                     𝑥 ≥ 0
𝛼(𝑒𝑥 − 1)                    𝑥 < 0

                                                            (20) 

 

Different activation functions may lead to different prediction results. In practice, the choice of 

activation function tends to be experimental and needs to be tested. For the last layer of ANN, the 

choice of activation function should consider the number of labels for classification. In a binary 

classification problem, the Sigmoid function is often used as the activation function in the last 

layer. For the multi-class classification problem, the SoftMax function often normalizes the results 

into probabilities that have the summation of 1. The SoftMax function returns the probability of 
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each class. As shown in Equation 21, the probability of being labeled i in a M labels classification 

problem is: 

 

𝑃(𝑦 =  𝑖) =  
exp (𝑧𝑖)

∑ exp (𝑧𝑗)𝑀
1

                                                                                    (21) 

 

where, 𝑧𝑖 represents the values from the nodes in the output layer.  

 

Loss function 

The process of training the neural network is to update the weights to minimize the loss function. 

Cross-entropy-based loss functions are commonly used in classification problems. In binary 

classification, the binary cross-entropy is presented as Equation 22: 

 

𝐿 =  −(𝑦𝑖 log(𝑦𝑖̂) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦𝑖̂))                                                                                  (22) 

 

where, 𝑦𝑖 represents the expected outcome, and 𝑦𝑖̂ represents the outcome produced by the model. 

In a multi-class classification problem, the categorical cross-entropy for M classes is shown in 

Equation 23: 

 

 𝐿 =  ∑ 𝑦𝑗 log(𝑦𝑗̂)𝑀
𝑗=1                                                                                                                    (23) 

 

Back-Propagation 

Back-propagation (Backward propagation of errors) algorithm aims to train artificial neural 

networks by iteratively updating the weights to minimize the loss function. In other words, the 

method calculates the gradient of the loss function with respect to all the weights in the network 

so that the gradient is fed to the gradient descent method, and the weights are updated to minimize 

the loss function. 

 

5.2.2 Convolutional Neural Network (CNN) 

A Convolutional neural network (CNN) architecture consists of three types of layers: 

convolutional layers, pooling layers, and fully connected (FC) layers, as shown in FIGURE 17 

below. The convolutional layer and pooling layers are used to extract features in images, and the 

FC layers take the output from the previous convolutional layer and predict the class of the image. 

Compared with the ANN model, CNN has the ability to capture the local connectivity of the image 

and downscale the image dimension at the same time.  

 

 
FIGURE 17 A diagram of CNN architecture  
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Convolutional Layer 

The input of this layer is the pixel matrix converted from the raw image. Then, the mathematical 

operation of convolution is performed between the input matrix and several filters. By sliding the 

filter over the input matrix, the dot product is taken between the filter and the parts of the input 

image within the size of the filter. The output is the Feature map that contains the image 

information, such as the corners and edges.  

 

Pooling Layer 

Typically, a Convolutional Layer is followed by a Pooling Layer. The Pooling Layer usually serves 

as a bridge between the Convolutional Layer and the FC Layer. It aims to decrease the size of the 

feature map from the previous step to reduce computational costs. There are several types of 

Pooling operations. Max pooling is the most commonly used one. In Max Pooling, the largest 

element is taken from the feature map.  

 

Fully Connected Layer/Dense layer 

The Fully Connected (FC) /Dense layer is similar to the FC layer in ANN model introduced in the 

previous section. It consists of the weights and biases along with the neurons and is used to connect 

the neurons between two different layers. The flattened outcome from previous layers is fed to the 

FC layers to make the classification.  
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6. Crash-risk Prediction 
6.1 Variable Creation 

The team created variables to describe the pre-crash traffic speed characteristics, including the 

speed reductions and the speed variations within certain times before the crash. The speed-related 

variables were generated based on the spatial-temporal speed matrices (0.1 miles × 1 minute). Note 

that the HERE database reports the speeds for each TMC every minute; therefore, the speed could 

change from one matrix cell to another if the time is different. For a 20-minute time interval, the 

speed would technically change 20 times. The team created variables to capture the average speed 

reductions, the variation of speed reductions, and the speed reductions at different percentiles 

(minimum, 25th, 75th, and maximum). The speed reductions are calculated for the one-minute 

period and summarized over the 20-minute interval. In other words, in every 20-minute interval, 

there are 19-speed reduction values to be summarized by their mean, variance, and percentile 

values. The goal of having these variables is to describe the pre-crash speed curve at or around the 

crash location. TABLE 9 summarizes the variables created to capture the speed dynamics from 

various aspects.  

 

It is important to note that the traffic dynamic variables were created for three different pre-crash 

time points at 10, 15, and 20 minutes (before the event of a crash) separately. In addition, to reflect 

the variation of data reporting TMCs whose spatial extent could change from time to time, the 

team created the variables to indicate the mean and variance of the number of dynamic sub-TMCs 

within a 20-minute time interval at different pre-crash time points.  

 

Besides the traffic dynamics before crashes, the team also extracted the traffic speed information 

for crash-free conditions paired with the crash conditions. Specifically, for each crash record, one 

crash-free record was generated at the same location and the same time of day but on a different 

day when there was no crash. For the crash-free records, the same sets of variables were created 

through the same methods of data linkage and variable creation. Note that crash-free observations 

can be created for any time and location where no crashes occurred. The team covers the entire 

freeway network in Alabama; there would be an extremely large number of crash-free observations 

if created for any time and location where no crash occurred. Besides, machine learning models 

often require balanced data; therefore, in this project, for each crash observation, one crash-free 

observation was created for the same location but at a different time when there was no crash. 

Further, the way of creating crash-free observations at the same locations could ensure that drivers 

would face the same roadway environments but different traffic contexts at various times, which 

supports the aim of the team to explore the relationships between crash risk and traffic dynamics. 

 

TABLE 9 also includes road environment variables extracted from the HPMS road infrastructure 

database. These variables include the log-transformation of Annual Average Daily Traffic 

(AADT), the number of through lanes in one direction, and land use type. Hossain & Muromachi 

(2012) suggested that the conditions near ramp areas are substantially different from basic freeway 

segments and may affect crash risk differently. The distance to the nearest upstream ramp was 

obtained based on the road shapefile in the HPMS database. Further, the team pulled the variables 

of the direction of traffic, the time of day, and the day of the week from the CARE crash database.  

In total, 17,423 records were generated for modeling, of which 8,688 are crash records (labeled as 

1) and 8,736 are crash-free records (labeled as 0). Notably, the number of crash records is not 
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exactly equal to the number of crash-free records, because some observations with missing 

information (e.g., HERE data were unavailable at some locations/times) were deleted. 

 

TABLE 9 Variables for the models  
Traffic Dynamic Variables* (Data source: HERE database) 

Variables Description Equation 

spmeant_5m_up 

Mean pre-crash traffic speed 

(over a 20-min interval) for 

the 5 miles upstream.  
spmean𝐭_5m_up =

∑ ∑ 𝑣𝑖𝑗
0
𝑖=−50

10−𝑡
𝑗=−𝑡−10

1000
 

spvct_5m_up 

Variance of pre-crash speed 

(over a 20-min interval) for 

the 5 miles upstream.  
spvc𝐭_5m_up =

∑ ∑   (𝑣𝑖𝑗 − spmean𝐭_5m_up)2    0
𝑖=−50

10−𝑡
𝑗=−𝑡−10

1000
 

spmeant_5m_dn 

Mean one-minute pre-crash 

traffic speed (over a 20-min 

interval) for the 5 miles 

downstream.  

spmean𝐭_5m_dn =
∑ ∑ 𝑣𝑖𝑗

50
𝑖=0

10−𝑡
𝑗=−𝑡−10

1000
 

spvct_5m_dn 

Variance of pre-crash speed 

(over a 20-min interval) for 

the 5 miles downstream. 
spvc𝐭_5m_dn =

∑ ∑   (𝑣𝑖𝑗 − spmean𝐭_5m_dn)2    50
𝑖=0

10−𝑡
𝑗=−𝑡−10

1000
 

tmaxspddropt 

The pre-crash time point for 

the max one-minute speed 

reduction over a 20-min 

interval at the crash location 

(from the same column of the 

spatial-temporal matrix) 

tmaxspddrop𝐭 = t𝑗( when max(𝑣𝑖𝑗−1 − 𝑣𝑖𝑗)) 

(𝑖 =  0, −𝑡 − 10 ≤ 𝑗 ≤ 10 − 𝑡) 

spmeant_5m_df 

The difference of mean pre-

crash speeds between 5 miles 

upstream and downstream. It 

is equal to spmeant_5m_up - 

spmeant_5m_dn.  

spmean𝐭_5m_df = spmean𝐭_5m_up −  spmean𝐭_5m_dn 

spvct_5m_df 

The difference of pre-crash 

speed variances between 5 

miles upstream and 

downstream. It is equal to 

spvct_5m_up - spvct_5m_dn. 

spvc𝐭_5m_df = spvc𝐭_5m_up −  spvc𝐭_5m_dn 

spddropmeant 

Mean one-minute speed 

reduction (over a 20-min 

interval) at the crash location 

(from the same column of the 

spatial-temporal matrix) 

spddropmean𝐭 =
∑ (𝑣𝑖𝑗−1 − 𝑣𝑖𝑗)10−𝑡

𝑗=−𝑡−10

20
(𝑖 = 0) 

spddropvct 

Variance of speed reduction 

(over a 20-min interval) at the 

crash location (from the same 

column of the spatial-temporal 

matrix) 

spddropvc𝐭 =
∑ ((𝑣𝑖𝑗−1 − 𝑣𝑖𝑗) − spddropmean𝐭)

2
10−𝑡
𝑗=−𝑡−10

20
(𝑖

= 0) 

spddropmaxt 

Maximum one-minute speed 

reduction (over a 20-min 

interval) at the crash location 

(from the same column of the 

spatial-temporal matrix) 

spddropmax𝐭 = max(𝑣𝑖𝑗−1 − 𝑣𝑖𝑗) 

(𝑖 =  0, −𝑡 − 10 ≤ 𝑗 ≤ 10 − 𝑡) 

spddropupt 

75th percentile speed 

reduction (over a 20-min 

interval) at the crash location 

spddropup𝐭 = Q3 (𝑣𝑖𝑗−1 − 𝑣𝑖𝑗) 

(𝑖 =  0, −𝑡 − 10 ≤ 𝑗 ≤ 10 − 𝑡) 
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(from the same column of the 

spatial-temporal matrix) 

spddroplowt 

25th percentile speed 

reduction (over a 20-min 

interval) at the crash location 

(from the same column of the 

spatial-temporal matrix) 

spddroplow𝐭 = Q1 (𝑣𝑖𝑗−1 − 𝑣𝑖𝑗) 

(𝑖 =  0, −𝑡 − 10 ≤ 𝑗 ≤ 10 − 𝑡) 

spddropmint 

Minimum one-minute speed 

reduction (over a 20-min 

interval) at the crash location 

(from the same column of the 

spatial-temporal matrix) 

spddropmin𝐭 = 𝑚𝑖𝑛 (𝑣𝑖𝑗−1 − 𝑣𝑖𝑗) 

(𝑖 =  0, −𝑡 − 10 ≤ 𝑗 ≤ 10 − 𝑡) 

Tmcavet 

Mean of the number of 

dynamic sub-TMCs /min over 

a 20-min interval  
Tmcave𝐭 =

∑ 𝑁𝑗(𝑇𝑀𝐶)10−𝑡
𝑗= −𝑡−9

20
 

Tmcvart 

Variance of the number of 

dynamic sub-TMCs/min over 

a 20-min interval 
Tmcvar𝐭 =

∑ (𝑁𝑗(𝑇𝑀𝐶) − Tmcave𝐭)2 10−𝑡
𝑗= −𝑡−9

20
 

Other Variables (Data source: CARE database and HPMS database) 

Variables Description 

Logaadt Logarithm of AADT 

Through_La Number of through lanes 

NearestDist Distance to the nearest upstream ramp 

UrbanRural Land use type (Base: Rural) 

Direction 
Northbound/Southbound/Westbound/Eastbound 

(Base: Eastbound) 

Timeind 
a.m. peak (06:00 to 10:00)/midday (10:00 to 16:00)/p.m. peak (16:00 to 20:00)/night (20:00 to 

06:00) (Base: a.m. peak) 

Weekday Weekday/Weekends (Base: Weekends = 0) 

Notes: 

(1) * The Traffic Dynamic Variables were created for three different pre-crash time points at 10, 15, and 20 minutes 

(prior to the event of a crash) separately. In the variable names, the letter “t” represents the pre-crash time points, 

and is replaced by the number “10”, “15”, and “20” respectively in the datasets for modeling. (2) 𝑣𝑖𝑗 means the 

speed in location 𝑖 at pre-crash time point 𝑗 , and its value equals to the value in cell 𝑖𝑗 in the spatial-temporal speed 

matrix. (3) 𝑁𝑗(𝑇𝑀𝐶) denotes the total number of dynamic TMCs both upstream and downstream at pre-crash time 

point 𝑗. 

 

6.2 Results of Statewide Model  

6.2.1 Descriptive Statistics  

FIGURE 18 shows the distribution of four selected traffic dynamics independent variables for both 

crash and crash-free conditions. For crash conditions, separated distributions were shown for all 

crashes, single-vehicle crashes, sideswipe crashes, and rear-end crashes. In each condition, three 

boxplots were drawn to show the distribution of selected traffic dynamics variables among three 

different pre-crash time cases (10, 15, and 20 minutes before the crash). In general, boxplots of 

rear-end crash groups are comparatively tall in all four plots, especially compared with boxplots 

of the crash-free group, meaning that rear-end crashes are related to greater speed variations, as 

demonstrated by wider distributions of speed reductions (as shown in FIGURE 18 (i) and FIGURE 

18 (ii)) and speed variances (as shown in FIGURE 18 (iii) and FIGURE 18 (iv)). In addition, the 

medians of boxplots in the rear-end crash group are greater than the median of boxplots in other 

groups, indicating that rear-end crashes are more likely to be related to higher speed reduction (as 

shown in FIGURE 18 (i) and FIGURE 18 (ii)) and speed variances (as shown in FIGURE 18 (iii) 

and FIGURE 18 (iv)). From a time perspective, wider distributions are shown in times cases closer 
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to the occurrence of rear-end crashes, indicating that the speed closer to the event of rear-end 

crashes changes more significantly.  

  
(i) Maximum one-minute speed reduction 

(over a 20-min interval) at the crash location 

(ii) Mean one-minute speed reduction (over a 

20-min interval) at the crash location 

  
(iii) Variance of pre-crash speed (over a 20-

min interval) for the 5 miles upstream 

(iv) Variance of speed reduction (over a 20-

min interval) at the crash location 

FIGURE 18 Distributions of selected traffic dynamics variables 

 

6.2.2 All Crash Models 

TABLE 10 summarizes the performance of all crash models that predict the risk for any type of 

crash. In general, the performance metrics indicate that all models have limited power for crash 

risk prediction. The models that took the 10-min pre-crash traffic dynamics as inputs appeared to 

have a better performance than other models, and the models taking the 15-min pre-crash data 

were better than the models with the 20-min pre-crash information. The results indicate that the 

traffic dynamics closer to the event of a crash are more predictive of the crash risk.  

 

The best performance model using the 10-min pre-crash data had an AUC of 61.7% and an 

accuracy (ACC) of 58.2%. Some previous studies reported crash risk prediction models with an 

accuracy higher than 80% (Hossain et al., 2019). The low accuracy reported in this project may be 

explained by the data aspect. Previous studies developed models using traffic data from a limited 

environment such as one segment or corridor (e.g., I-80 highway in California, I-235 in Des 

Moines, IA) (Huang et al., 2020; Lin et al., 2020). The traffic data used in this project covered the 

entire freeway network in Alabama. In addition to the traffic dynamics, many other factors could 
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also have a relationship with the crash risk. These factors may include the road environment, driver 

population, and vehicle fleets, and they could vary significantly across geographic areas. The 

models developed in this project include limited road environment variables and no variables for 

driver population and vehicle fleets, leading to the issue of unobserved heterogeneity 

(Abdelrahman et al., 2017). When data used for modeling are collected from a limited 

environment, the issue of unobserved heterogeneity may be avoided as all observations are from 

the same environment and share the impacts of unobserved factors on modeling outcomes. Further, 

the data quality could also affect the modeling performance. The team used the HERE 

crowdsourced probe vehicle data, which is different from the traffic data collected through loop 

detectors or other sensors fixed on the road or roadside. Unlike loop detector data, the HERE data 

generated from probe vehicles does not cover the entire fleet and does not provide information 

about traffic volumes at the time of or before the event of a crash (Anuar et al., 2015). Models in 

this project relied on traffic speed records, which are aggregated from probe vehicles’ speeds. It is 

known that not all road segments can be covered by enough probe vehicles due to the high mobility 

and a limited number of probe vehicles (Naranjo et al., 2012). Historical traffic speeds are reported 

for these segments (TMC) at this moment. There may be other data issues such as misreporting 

and delay in data transmission through wireless communication (Zhang et al., 2013). The overall 

data inaccuracy in the HERE data remains unknown to the authors. 

 

In addition to the data-related reasons, another reason may be that crashes with several types have 

a different relationship with the traffic dynamics. For example, a rear-end crash occurs when a 

driver is following too closely to the car in front of him/her, which is likely to happen in congested 

traffic (Chatterjee & Davis, 2016). Single-vehicle crashes such as run-off-road crashes are more 

likely to occur in free-flow traffic conditions (Liu & Ye, 2011). Having all crashes in one model 

may lead to an unclear relationship between crash risk and traffic dynamics, as indicated by the 

poor model prediction performance.  
 

TABLE 10 Model performance on crash risk prediction for all crash types 

Pre-crash  

time point 
Model Parameter setting ACC PR FAR AUC 

10 min 

Logistic model thresholds = 0.473 57.9% 55.7% 39.9% 60.6% 

RF 

max_features='sqrt',  

n_estimators=494, 

 thresholds = 0.489 

58.2% 54.4% 38.0% 61.7% 

XGBoost 

learning_rate=0.05, 

n_estimators=100, 

 thresholds = 0.468 

57.1% 55.0% 40.6% 59.8% 

SVM 

C=1, gamma=0.01,  

kernel = "RBF", 

thresholds = 0.461 

58.3% 57.8% 41.1% 60.9% 

15 min 

Logistic model thresholds = 0.474 56.0% 54.7% 42.6% 58.5% 

Random Forest model 

max_features='sqrt',  

n_estimators=494, 

 thresholds = 0.491 

55.9% 49.8% 37.9% 59.5% 
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XGBoost 

learning_rate=0.05, 

n_estimators=100, 

thresholds = 0.476 

55.9% 51.9% 39.8% 58.8% 

SVM 

C=0.1, gamma=0.1, 

kernel = "RBF", 

thresholds = 0.467 

56.0% 52.1% 40.0% 58.0% 

20 min 

Logistic model thresholds = 0.476 55.3% 53.0% 42.3% 57.4% 

RF 

max_features='sqrt',  

n_estimators=494, 

 thresholds = 0.489 

55.7% 50.8% 39.1% 58.8% 

XGBoost 

learning_rate=0.1, 

n_estimators=100, 

 thresholds = 0.476 

55.7% 55.3% 43.8% 58.0% 

SVM 

C=100, 

gamma=0.001,  

kernel = "RBF", 

thresholds = 0.469 

55.5% 53.0% 42.0% 57.8% 

Notes: “n_estimators” denotes the number of decision trees in the forest; “max_features” denotes the number of 

features is considered by each tree when splitting a node; “thresholds” denotes the thresholds for distinguishing 

crash observations from crash-free observations; learning_rate denotes the weighting of new trees added to the 

XGBoost model. 

 

6.2.3 Models for Single-Vehicle, Sideswipe Crash and Rear-End Crashes 

Considering that crashes of distinct types may have a different relationship with the traffic 

dynamics, the team estimated separate models for three major crash types: single-vehicle, 

sideswipe, and rear-end crashes. As indicated above, the traffic dynamics closer to the event of a 

crash are more predictive of the crash risk. TABLE 11 presents the models based on the 10-min 

pre-crash traffic dynamics. In terms of all model evaluation metrics, the models for rear-end 

crashes have better prediction performance than other models. It implies that rear-end crashes 

appear to be more predictable than the other two types of crashes if the crash risk models are 

developed based on the crowdsourced probe vehicle data. For rear-end crashes, in comparison with 

the logistic regression model, XGBoost, and SVM model, the RF model had a slightly improved 

prediction performance according to the ROC value (68.4%) and the Prediction Rate (PR) (52.6%).  

 

TABLE 11Model performance on crash risk prediction for different crash types 

Crash type Model Parameter setting ACC PR FAR AUC 

Single-vehicle 

crash 

Logistic model thresholds = 0.488 54.1% 55.3% 47.1% 54.3% 

RF 
n_estimators=216, 

thresholds = 0.472 
53.9% 61.0% 52.8% 56.0% 

XGBoost 

learning_rate=0.05, 

n_estimators=100, 

thresholds = 0.487 

53.5% 47.0% 40.4% 52.9% 

SVM 

C=10, 

gamma=0.001, 

thresholds = 0.507 

53.8% 44.8% 37.9% 53.8% 
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Sideswipe crash 

Logistic model thresholds = 0.490 54.2% 51.8% 43.3% 55.8% 

RF 
n_estimators=50, 

threholds = 0.48 
47.2% 47.6% 53.2% 45.8% 

XGBoost 

learning_rate=0.1, 

n_estimators=100, 

thresholds = 0.487 

46.4% 57.2% 64.3% 45.3% 

SVM 

C=10, 

gamma=0.001, 

thresholds = 0.491 

55.8% 52.1% 40.4% 55.8% 

Rear-end 

Crash 

Logistic model thresholds = 0.434 64.1% 67.0% 38.7% 67.4% 

RF 

max_features='sqrt', 

n_estimators=494, 

thresholds = 0.540 

65.1% 52.6% 23.0% 68.4% 

XGBoost 

learning_rate=0.05, 

n_estimators=100, 

thresholds = 0.485 

63.1% 57.4% 31.4% 66.3% 

SVM 

C=10, 

gamma=0.01, 

thresholds = 0.507 

64.8% 52.9% 23.9% 65.9% 

Notes: “n_estimators” denotes the number of decision trees in the forest; “max_features” denotes the number of 

features is considered by each tree when splitting a node, and “thresholds” denotes the thresholds for distinguishing 

crash observations from crash-free observations; learning_rate denotes the weighting of new trees added to the 

XGBoost model. 

 

6.2.4 Model Interpretation 

For rear-end crash models, the team calculated the permutation feature importance for each 

variable and computed the partial dependence for pre-crash speed-related variables that are top-

ranked according to the feature importance. FIGURE 19 shows the ranking of the top 20 variables 

for the RF model, according to the permutation feature importance. The variable rankings for 

logistic regression, XGBoost model, and SVM models are also shown in FIGURE 9 as a 

comparison. Though the rankings are different across the four models, the pre-crash speed-related 

variables are in general, ranked high in all four models.  
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FIGURE 19 Ranking of permutation variable importance for RF, SVM, logistic regression 

(LR), and XGBoost for rear-end crashes 

 

FIGURE 20 presents the partial dependence plots for the top six pre-crash speed-related variables 

according to the RF model’s permutation feature importance. The plots show forecasted risks for 

rear-end crashes by varying one particular independent variable (e.g., mean one-minute speed 

reduction at the crash location) and holding other variables constant. Overall, similar relationships 

between independent variables and crash risks are found in four modeling approaches - logistic 

regression, RF, XGBoost, and SVM. Besides the similarities, the differences are also evident. The 

results of logistic regression and SVM models show nearly linear relationships between crash risk 

and associated traffic variables, while the tree-based models (RF and XGBoost) uncovered 

nonlinear relationships. 

 

FIGURE 20 (i) shows the relationships between the rear-end crash risk and mean one-minute speed 

reductions. Greater speed reductions are associated with higher crash risks and a significantly 

higher crash risk is found for the mean one-minute speed reduction greater than 0.75 mph per 

minute, according to RF and XGBoost models. FIGURE 20 (iv) shows a similar trend for the 

maximum one-minute speed reduction. As shown in FIGURE 20 (ii), the variance of one-minute 

speed reduction also has a significant relationship with rear-end crash risks. Higher crash risks 

seem to be linked to greater variances. According to RF and XGBoost models, the risks would 

increase significantly when the variance reaches 20. After this point, the risks appear to be 

relatively constant. FIGURE 20 (iii) shows the relationship between crash risk and variance of pre-

crash speeds for upstream traffic within 5 miles. Similarly, higher crash risks are related to greater 

speed variances. The non-linear relationships revealed by RF and XGBoost models show the crash 

risk would increase significantly when the variance reaches around 55 and stay stabilized 

afterward. FIGURE 20 (v) shows a positive relationship between crash risk and the pre-crash time 

point for the max 1-min speed reduction over a 20-min interval at the crash location. It means that 

a higher rear-end crash risk is associated with a closer pre-crash time point for the max 1-min 

speed reduction over a 20-min interval at the crash location. FIGURE 20 (vi) shows the 

relationship between the crash risk and the 25th percentile speed reduction. The relationship is 

relatively stationary across different values of this independent variable, meaning a potentially 

insignificant relationship. 
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(i) Mean one-minute speed reduction (over 

20-min intervals) at the crash location  

(ii) Variance of one-minute speed reduction 

(over a 20-min interval) at the crash location  

  
(iii) Variance of pre-crash speed (over a 20-

min interval) for the 5 miles upstream. 

(iv) Maximum one-minute speed reduction 

(over a 20-min interval) at the crash location  

  

(v) The pre-crash time point for the max one-

minute speed reduction over a 20-min 

interval at the crash location  

(vi) 25th percentile one-minute speed 

reduction (over a 20-min interval) at the crash 

location  

FIGURE 20 Partial dependence plots of top-six variables in the RF model for rear-end 

crash 
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6.3 Results of High Crash Density Freeway Segments Model 

6.3.1 High Crash-Density Segments Identification 

As shown in TABLE 12, the top three crash subtypes are single-vehicle crashes, rear-end crashes, 

and sideswipe crashes, accounting for 35.6%, 34.7%, and 18.3% of the total crashes. As 

demonstrated in our previous study (Zhang et al., 2022), rear-end crashes are more predictable by 

pre-crash traffic dynamics among other crash subtypes. Therefore, in this weekly report, we built 

separate models for all types of crashes, single-vehicle crashes, rear-end crashes, and sideswipe 

crashes under different levels of crash density.  

 

TABLE 12 Frequency of the crash subtypes 

Manner of Crash Frequency Percentage 

Single Vehicle Crash (all types) 3558 35.6% 

Rear End (front to rear) 3465 34.7% 

Sideswipe - Same Direction  1830 18.3% 

Other 421 4.2% 

Side Impact (angled) 272 2.7% 

Non-Collision 150 1.5% 

Angle (front to side) Same Direction 147 1.5% 

Head-On (front to front only) 55 0.6% 

Side Impact (90 degrees) 37 0.4% 

Angle Oncoming (frontal) 24 0.2% 

Unknown 13 0.1% 

Sideswipe - Opposite Direction 12 0.1% 

Angle (front to side) Opposite Direction 10 0.1% 

Causal Veh Backing: Rear to Rear 2 0.0% 

Causal Veh Backing: Rear to Side 1 0.0% 

 

To identify the high-frequency crash sites, the crashes were aggregated at the freeway segment 

level based on the recorded mile marker in the CARE crash report. That is, we counted the all 

types of crash frequency, rear-end crash frequency, sideswipe crash frequency, and single-vehicle 

crash frequency for every mile of the selected freeway. TABLE 13 shows the distribution of the 

crash frequencies aggregated at the mile level of the freeway segment. A 1-mile segment can cause 

up to 52 crashes. The 80th percentile of all-type crash density is 8 and the 50th percentile of all-

type crash density is 4. For rear-end crashes, the highest density can be up to 37 crashes/mile. The 

80th percentile of rear-end crash density is 3 and the 50th percentile of rear-end crash density is 1. 

For sideswipe crashes and single-vehicle crashes, the highest segment-level densities are 21 and 

27, respectively. FIGURE 1 shows the violin plot of crash frequency by crash types. The shape of 

violin plots demonstrates that some sites are associated with high crash density, while the crash 

frequency of the majority of the freeway sites is around the medians.  
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FIGURE 21 Selected freeway within the boundary of the state of Alabama 

 

TABLE 13 Summary statistics for the crash frequencies count at a 1-mile level  

Terms 

All crash 

density 

(crash/mile) 

Rear-end crash 

density 

(crash/mile) 

Sideswipe crash 

density 

(crash/mile) 

Single vehicle 

crash density 

(crash/mile) 

Mean 6 2 1 2 

Standard deviation 6 3 2 2 

Maximum 52 37 21 27 

90th percentile 11.2 4 3 4 

80th percentile 8 3 2 3 

70th percentile 6 2 1 2 

60th percentile 5 1 1 2 

50th percentile 4 1 1 2 

40th percentile 3 1 0 1 

30th percentile 2 0 0 1 

20th percentile 2 0 0 1 

10th percentile 1 0 0 0 

Minimum 1 0 0 0 
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FIGURE 22 Violin plot of crash density 

 

TABLE 14 shows the top 20 crash frequency sites for a selected freeway in Alabama, categorized 

by all types of crashes, sideswipe crashes, rear-end crashes, and single-vehicle crashes. Note that 

the 'site_identifier' column in TABLE 14 comprises three parts: road name, road direction, and 

mile marker. For example, 'I-65_Northbound_259' refers to the number of crashes that occurred 

between mile markers 259 and 260 on the northbound side of I-65. The range of crash frequencies 

for the top 20 crash frequency sites is 29-52 for all types of crashes, 7-21 for sideswipe crashes, 

19-37 for rear-end crashes, and 8-27 for single-vehicle crashes. 

 

TABLE 14 Top 20 crash frequency sites of selected freeway in Alabama by crash subtypes 

(i) All types of crashes 
Rank Site_identifier Density Rank Site_identifier Density 

1 I-65_Northbound_259 52 11 I-459_Southbound_16 33 

2 I-20/I-59_Eastbound_76 47 12 I-65_Northbound_4 33 

3 I-65_Northbound_260 45 13 I-459_Southbound_17 32 

4 I-20/I-59_Westbound_126 44 14 I-20/I-59_Eastbound_124 31 

5 I-65_Northbound_252 41 15 I-459_Northbound_28 31 

6 I-459_Southbound_19 41 16 I-20/I-59_Westbound_81 30 

7 I-65_Southbound_259 40 17 I-10_Westbound_26 30 

8 I-20/I-59_Eastbound_123 39 18 I-20/I-59_Eastbound_117 29 

9 I-65_Northbound_266 36 19 I-10_Eastbound_25 29 

10 I-459_Northbound_16 35 20 I-65_Southbound_260 29 

 

(ii) Sideswipe-vehicle crash 
Rank Site_identifier Density Rank Site_identifier Density 

1 I-65_Northbound_260 21 11 I-20/I-59_Westbound_127 9 

2 I-20/I-59_Westbound_72 17 12 I-65_Northbound_259 8 

3 I-20/I-59_Westbound_126 15 13 I-65_Southbound_260 8 

4 I-20/I-59_Eastbound_76 14 14 I-85_Southbound_2 8 

5 I-20/I-59_Eastbound_124 11 15 I-20/I-59_Westbound_128 8 

6 I-65_Northbound_261 11 16 I-65_Southbound_173 8 
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7 I-459_Southbound_19 10 17 I-65_Southbound_261 8 

8 I-65_Southbound_259 10 18 I-65_Northbound_252 7 

9 I-65_Northbound_5 9 19 I-65_Southbound_5 7 

10 I-65_Southbound_242 9 20 I-20/I-59_Eastbound_118 7 

 

(iii) Rear-end crash density 
Rank Site_identifier Density Rank Site_identifier Density 

1 I-65_Northbound_259 37 11 I-65_Northbound_252 21 

2 I-20/I-59_Eastbound_123 30 12 I-459_Northbound_28 21 

3 I-20/I-59_Westbound_126 28 13 I-459_Northbound_16 21 

4 I-459_Southbound_19 27 14 I-459_Southbound_16 21 

5 I-65_Southbound_259 27 15 I-10_Westbound_27 21 

6 I-20/I-59_Eastbound_76 26 16 I-65_Northbound_236 21 

7 I-459_Northbound_15 24 17 I-65_Northbound_260 20 

8 I-459_Southbound_17 24 18 I-65_Northbound_4 19 

9 I-65_Southbound_244 24 19 I-10_Eastbound_25 19 

10 I-10_Westbound_26 22 20 I-65_Northbound_249 19 

 

(iv) Single-vehicle crash density 
Rank Site_identifier Density Rank Site_identifier Density 

1 I-65_Northbound_266 27 11 I-59_Southbound_131 10 

2 I-20/I-59_Westbound_81 23 12 I-85_Southbound_57 9 

3 I-65_Southbound_283 12 13 I-65_Northbound_298 8 

4 I-65_Northbound_252 11 14 I-20/I-59_Westbound_115 8 

5 I-65_Northbound_265 11 15 I-65_Southbound_270 8 

6 I-459_Southbound_29 11 16 I-65_Southbound_199 8 

7 I-459_Southbound_31 11 17 I-85_Southbound_22 8 

8 I-65_Southbound_269 11 18 I-20/I-59_Westbound_119 8 

9 I-20/I-59_Eastbound_115 10 19 I-20_Westbound_137 8 

10 I-59_Southbound_130 10 20 I-65_Southbound_271 8 

 

FIGURE 23 shows the mapping of crash frequency by type. The spatial distribution of high crash 

frequency areas for different crash types is not the same. Most of the high crash frequency sites 

are located within or near the Birmingham Metropolitan Area and Mobile Metropolitan Area, 

while I-22 is associated with fewer crashes. 
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(a) Mapping of the frequency of all-type 

of crashes at segment level 

(b) Mapping of the frequency of sideswipe 

crashes at segment level 

  

(c) Mapping of the frequency of rear-end 

crashes at segment level 

(d) Mapping of the frequency of all-type of 

crashes at segment level 

FIGURE 23 Mapping of the spatial distribution of the crash frequency 
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6.3.2 Separate Crash Risk Prediction Models  

We built crash risk prediction models for crashes located on highway segments with different 

levels of crash frequency. In particular, we first sorted the 1-mile length freeway segment by crash 

frequency. Then we extracted the 90 percentile, 80 percentile, 70 percentile, 60 percentile, 50 

percentile, 40 percentile, 30 percentile, 20 percentile, and 10 percentile of site-level crash 

frequency. Then extracted crashes located in freeway segments that have crash frequencies higher 

than specific percentiles. For example, first, we extracted crashes that occurred at the top 10% 

crash frequency sites (i.e., 90 percentile of site-level crash frequency), then followed by the 20% 

crash frequency sites, 30% crash frequency sites, 40% crash frequency sites, 50% crash frequency 

sites, 60% crash frequency sites, 70% crash frequency sites, 80% crash frequency sites, 90% crash 

frequency sites, and all sites, and built the models. The model types include logistic regression 

models (LR) and machine learning models including random forest (RF), support vector machines 

(SVM), and extreme gradient boosting models (XGBoost). In total, 40 models have been built. 

The models are all tuned by using the grid search method and 3-folded cross-validation is used to 

avoid overfitting. The models' accuracy is shown in FIGURE 4. The results show that, for all-type 

crash prediction models, generally, models for high-density crash freeway segments show better 

accuracy regardless of the model type. No significant improvement is shown for models separated 

by type.  

 

  
(a) All-type of crashes (b) Rear-end crash 

  
(c) Sideswipe crashes (d) Single-vehicle crash  

FIGURE 24 Crash prediction model accuracy by crash types and different levels of crash 

frequency. 

 

 

6.4 Summary and Conclusion 
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Real-time crash risk is expected to support proactive traffic incident management by generating 

critical information for traffic managers to allocate incident response resources to high-risk sites 

before the occurrence of crashes. The team developed crash risk prediction models by taking 

advantage of the HERE crowdsourced probe vehicle data from a live database that reports and 

archives minute-by-minute real-time traffic speeds for freeways. The data is not limited to a 

specific road segment and covers the entire freeway network in Alabama. Based on the HERE data, 

the team created a variety of variables to capture the pre-crash traffic dynamics, which are traffic 

speed characteristics before the event of crashes, measured by mean speed, speed variance, and 

speed reduction. In addition to the pre-crash traffic dynamics, the team also extracted the traffic 

dynamics for crash-free conditions. With the data processed for pre-crash and crash-free traffic 

dynamics, the team developed logistic regression and machine learning models to predict the crash 

risk on freeways according to traffic dynamics along with static freeway attributes. Three machine 

learning approaches, including random forest (RF), support vector machine (SVM), and extreme 

gradient boosting (XGBoost) were tested and compared. Separate models were developed for all 

crashes, single-vehicle crashes, rear-end crashes, and sideswipe crashes. Modeling results were 

interpreted by using permutation feature importance and partial dependence plots.  

 

The results indicated that the traffic dynamics closer to the event of a crash are more predictive of 

the crash risk. Models for rear-end crashes are found to have a greater accuracy than other models, 

which implies that rear-end crashes have a significant relationship with pre-crash traffic dynamics 

(especially speed) and are more predictable than other crashes. For rear-end crashes, in comparison 

with the logistic regression model, XGBoost model, and SVM model, the RF model had a slightly 

improved prediction performance according to the AUC value (68.4%) and the accuracy (ACC) 

(65.1%). For rear-end crash models, the team calculated the permutation feature importance for 

each variable and computed the partial dependence for pre-crash speed-related top-ranked 

variables according to the feature importance. Though the feature importance rankings are 

different across models, the pre-crash speed-related variables are generally ranked high in all three 

models. According to the estimated partial dependence, the rear-end crash risk is positively related 

to the speed variance and speed reductions. A higher rear-end crash risk is associated with a more 

significant speed variance upstream, and the risk for a rear-end crash increases when the traffic 

speed at this location decreases significantly.  

 

This study contributes by using crowdsourced probe vehicle data to develop real-time models to 

predict crash risk on freeways. Such data have been increasingly used by agencies for traffic 

monitoring and management at a reasonable cost without installing and maintaining electronic 

sensors on the road or roadside. Agencies with such data could potentially implement crash risk 

prediction models to facilitate their traffic incident responses. The team also identified the issues 

using such data for developing crash risk models. Continuing efforts are needed to examine the 

accuracy of the crowdsourced probe vehicle data, which is likely to vary across geographic areas 

and times. Future research will expand the modeling efforts to develop models that account for 

data issues such as unobserved heterogeneity.  
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7. Incident Detection 
7.1 Data Visualization 

There are seventeen types of sub-incidents recorded in the Algo traffic incident database. However, 

not all types of sub-incidents have significant impacts on traffic dynamics and can be reflected in 

the after-incident traffic dynamics captured by probe vehicle data. In this project, detectable 

incidents are defined as an incident type that has impacts on traffic, and such impact (e.g., speed 

drop) could be captured by the HERE probe vehicle data. To get an intuitive look at the traffic 

incident impacts on traffic dynamics, for each incident subtype, 9 randomly selected speed 

matrices within the detection area for this incident subtype are visualized, as shown in FIGURE 

25. As a comparison, the speed matrix within the detection area, when no incident occurs, is also 

visualized. The visualization results show that the traffic impacts due to the occurrence of 

abandoned vehicles and disabled vehicles are hard to reflect by the traffic dynamic obtained by 

HERE probe vehicle data. Conversely, in the majority of cases (based on our randomly selected 

FIGUREs), the traffic impact resulting from congestion, major crashes, minor crashes, moderate 

crashes, overturned vehicles, and vehicle fires are significantly captured by the spatial-temporal 

speed matrix. Based on such results, in this project, we classify congestion, major crashes, minor 

crashes, moderate crashes, overturned vehicles, and vehicle fire as the detectable incident subtypes. 

In addition, even for the same kind of incident sub-type, the after-incident traffic impact varies a 

lot during different times of day as well as the day of the week. Therefore, the team extracted 

incidents that occurred on weekdays during the daytime for model building later.  

  
(i) Abandoned Vehicle (ii) Congestion 

  

(a) Disabled vehicle 

 

(b) Grass fire 
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(c) Major crash (d) Minor crash 

  

(e) Moderate crash (f) Overturned vehicle 

 
 

(g) Police Activity (h) Vehicle fire 

 

 

Notes: weekday = 1 indicates the incident 

occurred during weekdays, and weekday = 0 

indicates the incident occurred during 

weekends; The time shows the corresponding 

time when the incident occurs in the hour (e.g., 

Time: 8 means the corresponding incident 

occur between 08:00 – 09: 00).  
 

(i) Incident free  

FIGURE 25 Spatial-temporal speed matrix for different incident subtypes 
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7.2 Results of Statewide Model 

7.2.1 Descriptive Statistics  

As visualized in FIGURE 25, the occurrence of some specific incident types (e.g., disabled vehicle, 

abandoned vehicle), though accounting for a majority of the total number of incidents, may have 

little impact on traffic dynamics captured by HERE probe vehicle data. In other words, through 

post-incident traffic dynamics provided by HERE vehicle data, some incident types (e.g., major 

crashes, and moderate crashes) are detectable, and some incident types may not be detectable. To 

further identify the detachable incident and undetectable incident, the team calculated two mean 

speed metrics as shown in Equation 24 (speed difference metrics 1) and Equation 25 (speed 

difference metrics 2). 

 

𝑆𝑝𝑑𝑖𝑓_𝑚𝑒𝑎𝑛_𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 = 𝑢𝑝15𝑏𝑒𝑓_𝑚𝑒𝑎𝑛 −  𝑢𝑝5𝑎𝑓𝑡_𝑚𝑒𝑎𝑛                                                (24) 

 

where, 𝑢𝑝15𝑏𝑒𝑓_𝑚𝑒𝑎𝑛 denotes the mean pre-incident traffic speed (15-min before the incident) 

for the 2-mile upstream; 𝑢𝑝5𝑎𝑓𝑡_𝑚𝑒𝑎𝑛 denotes mean after-incident traffic speed (5-min after the 

incident) for the 2-mile upstream. 

 

𝑆𝑝𝑑𝑖𝑓_𝑚𝑒𝑎𝑛_𝑢𝑝𝑑𝑛 = 𝑑𝑛5𝑎𝑓𝑡_𝑚𝑒𝑎𝑛 −  𝑢𝑝5𝑎𝑓𝑡_𝑚𝑒𝑎𝑛                                               (25) 

 

where, 𝑑𝑛5𝑎𝑓𝑡_𝑚𝑒𝑎𝑛 denotes the mean after-incident traffic speed (5-min after the incident) for 

the 1 mile downstream; 𝑢𝑝5𝑎𝑓𝑡_𝑚𝑒𝑎𝑛 has the same meaning in Equation 9.  

 

In this project, the speed difference metrics are calculated for each incident sub-type. For 

comparison purposes, the speed difference metrics for the incident-free condition are also 

calculated. The incident sub-type with large values of speed difference metrics can be identified 

in the probe vehicle. Inversely, the incident subtypes with low values of speed difference matrices 

(or values of speed difference matrices close to that of incident-free condition), cannot be detected 

in the probe vehicle data. In other words, incident subtypes with higher values of speed difference 

metrics may be more detectable when HERE probe vehicle data are used to detect incidents. 

TABLE 15 presents the speed difference measured by speed difference metrics for both incident 

conditions and incident-free conditions. The results show that the speed difference metrics for the 

disabled vehicle are 0.099 miles/hour and 0.726 miles/hour, respectively, which are quite like the 

speed difference metrics for incident-free conditions. Significant speed variations (either speed 

difference metric 1 or speed difference metric 2 is greater than 3 miles/hour) are found for incident 

types including minor crashes, moderate crashes, congestion, police activity, major crashes, 

vehicle fires, overturned vehicles, and grass fire.  

 

TABLE 15 Summarized traffic dynamics variables after the occurrence of different incident 

subtypes 

Term Frequency Percentage 
Speed difference 

metric 1 

Speed difference 

metric 2 

Incident - free 8,008 100.00% -0.117 0.453 

Incident 

subtypes 

Disabled Vehicle 4,786 59.83% 0.099 0.726 

Minor Crash 982 12.28% 1.779 5.864 

Abandoned Vehicle 762 9.53% 0.106 0.647 

Moderate Crash 402 5.03% 5.845 9.064 
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Congestion 314 3.93% 5.643 -3.045 

Debris 310 3.88% 1.096 2.199 

Police Activity 166 2.08% 2.587 4.41 

Major Crash 122 1.53% 7.765 14.346 

Vehicle Fire 51 0.64% 5.883 6.363 

Overturned Vehicle 39 0.49% 10.165 7.247 

Medical Emergency 21 0.26% 0.51 2.705 

Grass Fire 21 0.26% 4.799 2.588 

Null value 11 0.14% 0.408 4.292 

Note: this TABLE only shows the incident subtypes which account for at least 0.1% of the total 

number of incidents. 

 

7.2.2 Model Results 

The results of the visualization and speed difference metrics all indicate that the occurrence of 

some incident sub-types (e.g., abandoned vehicle, disabled vehicle, etc.) may have little impact on 

traffic flow in terms of speed reduction or the impact of traffic flow may be hardly reflected by the 

speed information captured by HERE probe vehicle data. Instead of building one single model to 

detect the occurrence of all types of incidents (i.e., all-type model), the team develops both the all-

type model and the model for only detectable incident sub-types. Besides, an additional model is 

developed to further classify detectable incident types. In this project, detectable incident sub-

types are classified as crash, congestion, and other traffic-impacted incidents. The details of model 

classification labels are shown in TABLE 16. Specifically, Model 1 is used to detect the occurrence 

of all types of incidents; Model 2 only detects the occurrence of detectable incident subtypes that 

are identified in the above section; Model 3 further classifies the types of detectable incidents into 

crash, congestion, and other traffic impacted incident; Model 4 has the same classification labels 

in Model 3 but with a balanced dataset. Note, for Model 1 to Model 3, one incident observation is 

paired with one incident-free observation. For Model 4, a balanced dataset is created based on 

Model 3 using an oversampling method called SMOTE.  

 

TABLE 16 Classification labels of different models 

Model Dataset Label 
Sample 

size 
Description 

Model 1 Raw data 
0 6673 Incident free 

1 6665 Incident 

Model 2 Raw data 

0 1416 Incident free 

1 1412 
Traffic impact incident (Congestion, Major Crash, Minor Crash, 

Moderate Crash, Overturned Vehicle, Vehicle Fire) 

Model 3 Raw data 

0 1416 Incident free 

1 1171 Crash 

2 172 Congestion 

3 69 Other traffic impacted incidents (Overturned Vehicle, Vehicle Fire) 

Model 4 
Balanced 

data 

0 1416 Incident free 

1 1416 Crash 

2 1416 Congestion 

3 1416 
Other traffic impacted incidents (“Overturned Vehicle, Vehicle 

Fire) 
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TABLE 17 (i) and (ii) present the modeling performance for Model 1 to Model 4 developed by 

ANN and CNN, respectively. In terms of incident detection models, the modeling results for both 

the ANN model and CNN model show that the model detecting traffic impact incidents has better 

prediction performance than the model detecting all types of incidents. This finding indicates that, 

for AID models, better prediction performance can be achieved when the model excludes the 

unpredictable incident sub-types. For incident-type classification models (i.e., model 3 and model 

4), consistent with previous studies, the model with balanced data (i.e., Model 4) has a slightly 

better performance in terms of accuracy than model 3, in both ANN and CNN models. Comparing 

the two modeling methods, the CNN method outperforms the ANN model in terms of accuracy in 

Model 1 and Model 3. For Model 2, the two methods all achieve the same accuracy of 0.65. For 

Model 4, the ANN method achieves better performance with an accuracy of 0.82 than the CNN 

method with an accuracy of 0.71. This finding indicates that as deep learning models, ANN and 

CNN can both be used to detect the occurrence of incidents and the method with better prediction 

power may vary depending on the specific classification problem and whether the data is balanced 

data or not.  

 

TABLE 17 Model performance 

(i) ANN model 
Model Parameter Label Precision recall f1-score support 

Model 1 

activation': 'relu', 

 'alpha':0.0001, 

 'hidden_layer_sizes': (150, 

100, 50), 

learning_rate': ’constant’, 

 'max_iter': 300, 

 ‘solver’: ‘adam’ 

0-Incident free 0.58 0.63 0.60 1,331 

1 - Incident 0.59 0.55 0.57 1,337 

macro avg 0.60 0.60 0.60 2,668 

weighted avg 0.60 0.60 0.60 2,668 

Accuracy   0.59 2,668 

Model 2 

activation': 'relu', 

 'alpha': 0.01, 

 'hidden_layer_sizes': (150, 

100, 50), 

 'learning_rate': 'adaptive', 

 'max_iter': 300, 

 ‘solver’: ‘adam’ 

0 - Incident free 0.69 0.84 0.76 277 

1 - traffic impact incident 0.81 0.63 0.71 289 

macro avg 0.75 0.74 0.73 566 

weighted avg 0.75 0.74 0.73 566 

Accuracy   0.74 566 

Model 3 

activation': 'relu', 

 'alpha': 0.01, 

 'hidden_layer_sizes': (150, 

100, 50), 

 'learning_rate': 'adaptive', 

 'max_iter': 300, 

 ‘solver’: ‘adam’ 

0 0.67 0.89 0.76 277 

1 0.69 0.45 0.54 242 

2 0.40 0.35 0.38 34 

3 0.29 0.15 0.20 13 

Macro avg 0.51 0.46 0.47 566 

Weighted avg 0.65 0.65 0.63 566 

Accuracy   0.65 566 

Model 4 

activation': 'relu', 

 'alpha': 0.01, 

 'hidden_layer_sizes': (150, 

100, 50), 

 'learning_rate': 'adaptive', 

 'max_iter': 300, 

 ‘solver’: ‘adam’ 

0 0.65 0.80 0.72 285 

1 0.80 0.54 0.64 286 

2 0.92 0.99 0.95 275 

3 0.94 0.97 0.95 287 

Macro avg 0.83 0.82 0.82 1,133 

Weighted avg 0.83 0.82 0.82 1,133 

Accuracy   0.82 1,133 

 

(ii) CNN model 
Model Structure Label precision recall f1-score support 

Model 1 0-Incident free 0.79 0.36 0.49 1,331 
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Conv2D + MaxPooling2D + 

Conv2D + MaxPooling2D + 

Flatten + Dropout + Dense 

1 - Incident 0.59 0.91 0.71 1,337 

macro avg 0.69 0.63 0.60 2,668 

weighted avg 0.69 0.63 0.60 2,668 

Accuracy   0.63 2,668 

Model 2 

Conv2D + MaxPooling2D + 

Conv2D + MaxPooling2D + 

Flatten + Dropout + Dense 

0 - Incident free 0.67 0.92 0.78 277 

1 - traffic impact incident 0.88 0.57 0.69 289 

macro avg 0.78 0.75 0.74 566 

weighted avg 0.78 0.74 0.73 566 

Accuracy   0.74 566 

Model 3 

Conv2D + MaxPooling2D + 

Conv2D + MaxPooling2D + 

Flatten + Dropout + Dense 

0 0.70 0.87 0.78 277 

1 0.67 0.57 0.61 242 

2 0.38 0.18 0.24 34 

3 -- -- -- 13 

Macro avg 0.44 0.40 0.41 566 

Weighted avg 0.65 0.68 0.66 566 

Accuracy   0.68 566 

Model 4 

Conv2D + MaxPooling2D + 

Conv2D + MaxPooling2D + 

Flatten + Dropout + Dense 

0 0.67 0.57 0.62 285 

1 0.64 0.46 0.53 286 

2 0.84 0.88 0.86 275 

3 0.68 0.94 0.79 287 

Macro avg 0.71 0.71 0.70 1,133 

Weighted avg 0.71 0.71 0.70 1,133 

Accuracy   0.71 1,133 

Note: “--” means there is no correctly classified observation for this class. 

 

7.3 Detectable Incidents in High-Risk Segments 

7.3.1 Detectable Incident Subtypes Identification 

TABLE 18 shows the distribution of the incident subtypes recorded in the Algo database in the 

year 2019. The incident subtypes that account for more than 1% of the total incident subtypes 

including disabled vehicle, abandoned vehicle, minor crash, moderate crash, congestion, debris, 

police activity, and major crash, account for 54.9%, 11.5%, 10.8%,9.8%, 4.3%, 3.5%, 1.6% and 

1.5% of the total incidents.  

 

TABLE 18 Distribution of incident subtypes 
Incident Subtype Frequency Percentage 

Disabled Vehicle 27587 54.9% 

Abandoned Vehicle 5796 11.5% 

Minor Crash 5440 10.8% 

Moderate Crash 4928 9.8% 

Congestion 2161 4.3% 

Debris 1748 3.5% 

Police Activity 781 1.6% 

Major Crash 768 1.5% 

Vehicle Fire 345 0.7% 

Overturned Vehicle 300 0.6% 

Grass Fire 116 0.2% 

Null value 106 0.2% 

Medical Emergency 83 0.2% 

Wildlife in Roadway 24 0.0% 

HazMat Spill 13 0.0% 
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Signal Outage 8 0.0% 

Smoke 4 0.0% 

Structure Fire 1 0.0% 

 

Some incident subtypes may have a minor influence on the traffic dynamic. For example, a 

disabled vehicle parked on the shoulder of the freeway may have a minor influence on the traffic 

dynamics. To identify the detectable traffic incident subtypes, we built separate detection models 

for different incident subtypes. TABLE 19 shows the traffic dynamic variables for the incident 

detection models.  

 

TABLE 19 Traffic dynamic variables for incident detection 

Traffic Dynamic Variables* (Data source: HERE database) 

Variables Description 

up15bef_mean 
Mean pre-incident traffic speed (15 minutes before the incident) for the 1 

mile upstream.  

up15bef_var 
Variance pre-incident traffic speed (15-min before the incident) for the 1 

mile upstream. 

dn15bef_mean 
Mean pre-incident traffic speed (15 minutes before the incident) for the 1 

mile downstream. 

dn15bef_var 
Variance pre-incident traffic speed (15-min before the incident) for the 1 

mile downstream. 

df15bef_mean up15bef_mean - dn15bef_mean 

df15bef_var up15bef_var - dn15bef_var 

up4aft_mean 
Mean after-incident traffic speed (15 minutes before the incident) for the 

1 mile upstream. 

up4aft_var 
Variance after-incident traffic speed (15 minutes before the incident) for 

the 1 mile upstream. 

dn4aft_mean 
Mean after-incident traffic speed (15 minutes before the incident) for the 

1 mile downstream. 

dn4aft_var 
Variance after-incident traffic speed (15 minutes before the incident) for 

the 1 mile downstream. 

df4aft_mean up4aft_mean - dn4aft_mean 

df4aft_var 'up4aft_var' - 'dn4aft_var' 

df_up4aft_mean 'up4aft_mean'- up15bef_mean 

df_up4aft_var 'up4aft_var'- up15bef_var 

df_dn4aft_mean 'dn4aft_mean'- dn15bef_mean 

df_dn4aft_var 'dn4aft_var'- dn15bef_var 

df_df4aft_mean 'df4aft_mean' - df15bef_mean 

df_df4aft_var 'df4aft_var' - df15bef_var 

sp4_drop_mean Mean speed drop at the incident location 

sp4_drop_var Variance of the speed drop at the incident location 

logaadt Log of the annual average daily traffic  

logaadt_truck Log of the annual average daily traffic for trucks 

Through_La Number of the through lanes 

UrbanRural Whether the incident locations are in rural or urban area 
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TABLE 20 shows the incident detection models for separated incident subtypes. We can find that 

incident subtypes – minor crashes, moderate crash congestions, and major crashes show an 

accuracy higher than 60%, which indicates that those crash types are more detecTABLE. In the 

previous section, we visualized the crash frequencies on the map.  

 

TABLE 20 Incident detection models for separated incident subtypes 

Crash subtype 
Time 

 period 

Detection 

time 
Accuracy Recall Precision F1 FAR AUC 

Disabled Vehicle ampeak 4 0.514 0.527 0.53 0.529 0.499 0.517 

Disabled Vehicle midday 4 0.513 0.477 0.519 0.497 0.451 0.527 

Disabled Vehicle pmpeak 4 0.524 0.514 0.532 0.523 0.467 0.521 

Disabled Vehicle night 4 0.526 0.451 0.546 0.494 0.395 0.536 

Abandoned Vehicle ampeak 4 0.583 0.547 0.578 0.562 0.382 0.593 

Abandoned Vehicle midday 4 0.55 0.554 0.583 0.568 0.455 0.579 

Abandoned Vehicle pmpeak 4 0.476 0.034 0.714 0.066 0.016 0.509 

Abandoned Vehicle night 4 0.535 0.464 0.472 0.468 0.409 0.488 

Minor Crash ampeak 4 0.622 0.582 0.654 0.616 0.333 0.656 

Minor Crash midday 4 0.672 0.632 0.673 0.652 0.291 0.713 

Minor Crash pmpeak 4 0.566 0.65 0.575 0.61 0.525 0.571 

Minor Crash night 4 0.566 0.377 0.667 0.481 0.217 0.577 

Moderate Crash ampeak 4 0.862 0.793 0.907 0.846 0.074 0.899 

Moderate Crash midday 4 0.731 0.734 0.727 0.731 0.272 0.787 

Moderate Crash pmpeak 4 0.692 0.577 0.727 0.644 0.202 0.739 

Moderate Crash night 4 0.633 0.643 0.643 0.643 0.377 0.686 

Congestion ampeak 4 0.789 0.868 0.759 0.81 0.296 0.785 

Congestion midday 4 0.804 0.851 0.775 0.811 0.241 0.851 

Congestion pmpeak 4 0.773 0.746 0.815 0.779 0.196 0.825 

Congestion night 4 0.833 0.789 0.833 0.811 0.13 0.886 

Debris ampeak 4 0.547 0.528 0.549 0.538 0.434 0.562 

Debris midday 4 0.511 0.622 0.497 0.553 0.594 0.501 

Debris pmpeak 4 0.486 0.472 0.486 0.479 0.5 0.422 

Debris night 4 0.527 0.429 0.667 0.522 0.324 0.572 

Police Activity ampeak 4 0.545 0.429 0.75 0.545 0.25 0.585 

Police Activity midday 4 0.513 0.333 0.652 0.441 0.242 0.494 

Police Activity pmpeak 4 0.517 0.417 0.417 0.417 0.412 0.505 

Police Activity night 4 0.561 0.382 0.568 0.457 0.271 0.496 

Major Crash ampeak 4 0.867 0.81 0.895 0.85 0.083 0.889 

Major Crash midday 4 0.735 0.592 0.935 0.725 0.059 0.77 

Major Crash pmpeak 4 0.871 0.929 0.813 0.867 0.176 0.899 

Major Crash night 4 0.8 0.704 0.792 0.745 0.132 0.798 

 

FIGURE 26 shows the mapping of the spatial distribution of the congestion. It can be seen that the 

majority of the congestion occurred around the mobile metropolitan area. In addition, the top 20 
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congestion frequency sites (recorded in Algo) of selected freeways in Alabama are shown in 

TABLE 9.  

 

 

 

FIGURE 26 

Mapping of the spatial distribution of the 

congestion 

TABLE 21 Top 20 congestion frequency sites 

(recorded in Algo) of selected freeway in 

Alabama  

 

7.3.2 Incident Detection Models 

FIGURE 27 (a) shows the incident detection models for the crashes across different site-level crash 

frequencies. Machine learning models including random forest (RF), XGBoost, and support vector 

machines show higher model accuracy than the logistic regression models. No significant model 

accuracy can be seen for the three machine-learning models with different levels of incident 

frequency. But for the logistic regression models, generally, models show higher accuracy in high 

crash-frequency sites. Since the distribution of congestion is right-tail (i.e., many sites are related 

to 0 observation of the congestion), we extracted three thresholds for site-level congestion density, 

including higher than 5 congestions, 2 congestions, and 0 congestion. Similar to the all-type crash 

detection model, machine learning models show higher detection accuracy, but logistic regression 

is sensitive to the site-level congestion frequency.  

 

Rank Site_identifier Density Rank Site_identifier Density

1 I-10_East_30 108 11 I-10_East_17 27

2 I-10_East_26 95 12 I-10_East_24 26

3 I-10_East_25 88 13 I-10_East_28 20

4 I-10_West_27 81 14 I-65_North_181 18

5 I-10_West_28 72 15 I-65_North_3 18

6 I-10_West_30 58 16 I-65_South_1 17

7 I-10_West_29 54 17 I-10_West_31 15

8 I-10_West_15 36 18 I-10_East_32 14

9 I-565_East_1 31 19 I-10_West_32 14

10 I-10_East_29 28 20 I-10_West_36 14
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(a) All types of crash (b) Congestion 

FIGURE 27 Incident detection model accuracy by detectable incident types and different 

levels of incident frequency. 

 

7.4 Summary and Conclusion 

Real-time automatic incident detection (AID) is expected to support traffic incident management 

by producing in-time incident information as a backup of other traffic incident detection methods 

such as 911 calls and police patrol. Developing an AID algorithm is the key to implementing 

successful incident detection. The team develops three kinds of AID algorithms taking advantage 

of the HERE probe vehicle database. The HERE database could provide speed information 

updated every minute. Three AID models are developed in this project: (a) Model 1: AID model 

to detect the occurrence of all-type incidents; (b) Model 2: AID model to detect traffic incidents 

that have significant impacts on traffic flow (in terms of speed) and can be captured by HERE 

probe vehicle data; (c) Model 3: AID model that further classifies the incident sub-types. The 

inputs of these models are spatial-temporal speed matrix extracted from the HERE database with 

a resolution of 0.1-mile times by 1 minute. For models with imbalanced datasets (i.e., Model 3), 

an oversampling method called SMOTE was used to generate a balanced dataset before developing 

the models (i.e., Model 4).  

 

The results indicated that AID models detecting the occurrence of traffic-impacted incidents have 

better-predicted accuracy than AID models detecting the occurrence of all types of traffic 

incidents, which implies that incorporating all types of incidents into the AID model will weaken 

the prediction performance of the AID model. For AID models that can classify the incident sub-

types (crash, congestion, and other traffic-impacted incidents), models with a balanced dataset can 

achieve higher performance compared to models without balancing. Compared to AID models 

developed using ANN, AID models developed using CNN achieve better performance accuracy 

in Model 1 and Model 3 and show similar performance accuracy in Model 2. For incident sub-type 

classification with balanced data, ANN shows better performance regarding accuracy. 

 

This section of the project contributes to the current state-of-the-art in multifold aspects. First, the 

team experimented with the possibility of using real-time speed information provided by probe 

vehicles to detect traffic incidents; Second, unlike previous studies incorporating all types of 

incidents into the AID model, the team identified traffic-impacted incidents and only included such 

types of incident into the AID models; Third, deep learning algorithms were used to capture the 

image-like real-time speed information provided by spatial-temporal speed matrix without 
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aggregating traffic information into summarized traffic flow variables; Fourth, the AID models 

developed in this project can classify different incident subtypes, which could provide helpful 

information for TIM practitioners to take proper countermeasures. Agencies with such data can 

potentially implement the AID models in this project to detect the occurrence of the incident and 

classify the incident types. In further studies, more ANN and CNN structures may be tested to 

achieve improved prediction performance. In addition, road characteristics and temporal 

information may also need to be considered and incorporated into the model.  

 

8. Incident Impact 
8.1 Variable Creation 

Regarding the spatial-temporal effects of the incident, the team develops three novel metrics to 

measure traffic incidents' spatiotemporal impacts: 1) the maximum queue length; 2) time at the 

maximum queue length; 3) and volume (i.e., the spatiotemporal extent of a queue). Those metrics 

are based on the traffic dynamics of the HERE data. In addition, the time at the maximum queue 

length after the occurrence of one incident (one incident could have no queue afterward) is 

extracted from the HERE database. Notably, the team developed a concept, named "volume", 

representing a queue's spatiotemporal extent calculated in three dimensions: speed reduction, 

segment length, and time window, as defined by Equation 26. 

 

𝑉𝑜𝑙𝑢𝑚𝑒 = {
∑ ∑ (𝐹𝐹𝑆𝑖−𝑆𝑝𝑒𝑒𝑑𝑚𝑡

)
𝑡𝑓
𝑡𝑖

𝑚𝑓
𝑚𝑖

60
} ∗ 𝑚𝑖𝑙𝑒𝑠 ∗ 3,600                                                                          (26) 

               

where 𝑚𝑖 and 𝑚𝑓 indicate the start and end milepost over a specific segment,  𝑡𝑖 𝑎𝑛𝑑 𝑡𝑓 are the 

initial and end timestamps over a specific duration, and  𝐹𝐹𝑆𝑖 is the free flow speed at the road 

segment 𝑖. In this project, the start and end milepost cover 5-mile segments, the initial and end 

timestamps cover a 60-minute duration, and a typical free flow speed is 70 mph. TABLE 23 shows 

detailed explanations for the abovementioned variables. Moreover, FIGURE 28 illustrates an 

example of the maximum queue length and time at the maximum queue length for a major crash 

incident. FIGURE 29 demonstrates a 3-D conceptual drawing of the spatiotemporal extent of a 

queue (volume). 

 

TABLE 22 Spatiotemporal Impacts (Bold) and Traffic Dynamics-related Variables 

Variables Descriptions 

queue_max The maximum queue length (up to 5-mile) 

time_queue_max The time reaches the maximum queue length (up to 60-min) 

volume The spatiotemporal extent of a queue (speed reduction * segment length * time window) 

up15bef_5m_mean The mean of pre-incident traffic speed (15-min before the incident) for 5-mile upstream 

up15bef_5m_var The variance of pre-incident traffic speed (15-min before the incident) for 5-mile upstream 

up15bef_3m_mean The mean of pre-incident traffic speed (15-min before the incident) for 3-mile upstream 

up15bef_3m_var The variance of pre-incident traffic speed (15-min before the incident) for 3-mile upstream 

up15bef_1m_mean The mean of pre-incident traffic speed (15-min before the incident) for 1 mile upstream 

up15bef_1m_var The variance of pre-incident traffic speed (15-min before the incident) for 1 mile upstream 
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FIGURE 28 Spatiotemporal impacts for an incident (max queue length & time at max 

queue length) 

 

 
FIGURE 29 Spatiotemporal impacts for an incident (volume) 
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8.2 Descriptive Statistics 

TABLE 24 demonstrates the descriptive statistics of variables used for the modeling process. 

According to TABLE 24, the queue length shorter than 1 mile has a higher percentage of data than 

other groups. Around 27% of queues caused by incidents were reached at their longest queuing 

distance within 10 minutes. As expected, the volume or spatiotemporal impacts of traffic incidents 

of less than 2,000 occupy the largest proportion (28%) of the dataset, indicating that over a quarter 

of traffic incidents in Alabama have a relatively small impact on road congestion. Similarly, the 

most considerable portion regarding the mean of pre-incident traffic speed (15 minutes before the 

incident) for 5 miles upstream of the incident location refers to the speed range between 60 and 80 

mph. 

 

From the standpoint of incidents’ characteristics, over 85% occurred during weekdays or on 

freeways in urban areas. The appearance of law enforcement accounts for 30% of total incidents. 

In terms of incident subtypes, 17% of incidents were minor crashes, and 12% were moderate 

crashes. It should be noted that disabled vehicles account for around 47% of total incidents, which 

may not cause serious traffic congestion in most cases. Besides, major crashes were found in 4% 

of total incidents. Lastly, regarding the effectiveness of Traffic Incident Management (TIM), 

around 25% of total incidents have less than a 20-minute response time, and over 27% of them can 

be handled and cleared within 30 minutes.  

 

TABLE 23 Descriptive Statistics of Variables 
Variables Categories Freq % Variables Categories Freq % 

queue 

  

(0.0-1.0] 2176 26.61 Winter (Dec., Jan., or Feb.) 

  

Yes 1784 21.81 

(1.0-2.0] 2061 25.20 No 6394 78.19 

(2.0-3.0] 1463 17.89 Weekday 

  

Yes 7215 88.22 

(3.0-4.0] 886 10.83 No 963 11.78 

(4.0-5.0] 1592 19.47 AM Peak (6 AM – 9 AM) 

  

Yes 1452 17.75 

time_queue_max 

  

1-10 2266 27.71 No 6726 82.25 

11-20 1564 19.12 PM Peak (4 PM – 7 PM) 

  

Yes 2480 30.33 

21-30 1251 15.30 No 5698 69.67 

31-40 1053 12.88 Police Presence 

  

Yes 2504 30.62 

41-50 996 12.18 No 5674 69.38 

51-60 1048 12.81 Towing Presence 

  

Yes 1292 15.80 

volume 

  

(0-2000] 2517 30.78 No 6886 84.20 

(2000-4000] 2365 28.92 
Urban  

Yes 6924 84.67 

(4000-6000] 1308 15.99 No 1254 15.33 

(6000-8000] 708 8.66 

Incident Subtype  

Disabled Vehicle 3906 47.76 

(8000-10000] 522 6.38 Minor Crash 1380 16.87 

>10000 758 9.27 Moderate Crash 1005 12.29 

up15bef_5m_mean 

(0-40] 605 7.40 Congestion 920 11.25 

(40-50] 724 8.85 Abandoned Vehicle 638 7.80 

(50-60] 1789 21.88 Major Crash 329 4.02 

(60-80] 5060 61.87 

Severity 

Low 5907 72.23 

up15bef_5m_var 

  

(0-50] 4263 52.13 Medium 1790 21.89 

(50-100] 1105 13.51 High 481 5.88 

(100-250] 1479 18.09 

Number of Lanes 

3-4 lanes 3224 39.42 

>250 1331 16.28 5-6 lanes 3112 38.05 

up15bef_3m_mean 

(0-40] 850 10.39 > 6 lanes 1842 22.52 

(40-50] 739 9.04 

AADT 

(0-20000] 569 6.96 

(50-60] 1878 22.96 (20000-40000] 3476 42.50 

(60-80] 4711 57.61 (40000-60000] 1978 24.19 

up15bef_3m_var 
(0-50] 4593 56.16 (60000-80000] 2155 26.35 

(50-100] 1012 12.37 Response Time (0-10] 1722 21.06 
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(100-250] 1437 17.57 (10-20] 399 4.88 

>250 1136 13.89 (20-60] 360 4.40 

up15bef_1m_mean 

(0-40] 1174 14.36 >60 109 1.33 

(40-50] 784 9.59 NA  5588 68.33 

(50-60] 1710 20.91 

Clearance Time 

(0-10] 1022 12.50 

(60-80] 4510 55.15 (10-20] 721 8.82 

up15bef_1m_var 

(0-50] 5433 66.43 (20-30] 586 7.17 

(50-100] 880 10.76 (30-60] 1703 20.82 

(100-250] 1180 14.43 (60-90] 834 10.20 

>250 685 8.38 >90 1248 15.26 

 

8.3 Impact Model 

8.3.1 Maximum Queue Length Models 

The marginal effects of variables on the model of maximum queue length are shown in TABLE 

25. The TABLE displays the average marginal effects, computed by averaging five machine 

learning models after removing the maximum and minimum values. The marginal effects of five 

machine learning models generally have the same signs but differing magnitudes. There are 

variables with both positive and negative marginal effects, including the mean or variations of pre-

incident traffic speed (15 minutes before the incident) for 5 miles upstream, urban area, incident 

subtype, incident severity, and the number of lanes. The marginal effect magnitudes may imply 

that these variables have a relatively minor or inconsequential impact on the model of maximum 

queue length. 

 

In terms of the mean of pre-incident traffic speed (15 minutes before the incident) for 5 miles 

upstream, negative marginal effects indicate that when upstream traffic flow speed is over 60 mph, 

it is 25% less likely to have a maximum queue length longer than 4 miles. A similar trend could 

be found in 3-mile and 1-mile upstream traffic dynamics. From the law enforcement perspective, 

the presence of police officers could lead to a 4% reduction in shorter than 1-mile maximum queue 

length. It should be noted that for major crash incidents, it is over 10% less likely to have a 

maximum queue length shorter than 1 mile but over 8% more likely to have a maximum queue 

length longer than 4-mile. As expected, similar findings could be found in high-severity traffic 

incidents. Lastly, with the AADT over 60,000 vehicles, it is on average 3% more likely to cause a 

maximum queue length longer than 4 miles. More findings regarding how contributing factors 

affect the maximum queue length can be found in TABLE 25. 

 

TABLE 24 Marginal Effects of Variables on Maximum Queue Length 

Variables Categories 
Average ME for queue_max 

(0.0-1.0] (1.0-2.0] (2.0-3.0] (3.0-4.0] (4.0-5.0] 

up15bef_5m_mean 

(0-40] - Base  - - - - - 

(40-50] -1.28% 0.02% 8.15% 1.48% -6.08% 

(50-60] 5.95% 10.52% 8.13% -2.23% -22.02% 

(60-80] 17.02% 11.88% 2.13% -4.99% -25.13% 

up15bef_5m_var 

(0-50] - Base  - - - - - 

(50-100] -5.83% 4.03% 2.16% 0.32% -1.17% 

(100-250] -12.13% 5.51% 2.75% 2.43% 2.57% 

>250 -15.32% 2.90% 5.59% 3.44% 3.39% 

up15bef_3m_mean 

(0-40] - Base  - - - - - 

(40-50] -1.19% -1.34% 2.65% 1.17% 0.08% 

(50-60] 3.28% 4.89% 2.59% 0.45% -8.81% 

(60-80] 10.27% 5.92% 1.61% -2.34% -13.11% 

up15bef_3m_var 
(0-50] - Base  - - - - - 

(50-100] -2.43% -0.23% 0.12% 0.85% 1.33% 
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(100-250] -6.48% 0.15% 1.91% 1.57% 2.10% 

>250 -5.55% 0.08% 3.08% 1.16% 1.77% 

up15bef_1m_mean 

(0-40] - Base  - - - - - 

(40-50] -1.38% 1.85% 0.07% -0.32% 0.34% 

(50-60] 0.77% -1.20% -0.73% 0.74% -0.28% 

(60-80] 0.14% -1.01% 0.54% 1.94% -1.84% 

up15bef_1m_var 

(0-50] - Base  - - - - - 

(50-100] -0.06% -0.46% 1.14% -1.17% 0.51% 

(100-250] -0.75% -0.45% -0.01% -0.35% 1.84% 

>250 -3.56% -0.91% 1.32% 1.25% 1.96% 

Winter (Dec., Jan., or Feb.) Yes 2.21% 0.14% -0.92% -0.66% -1.05% 

Weekday Yes 0.22% -0.02% 1.51% -0.20% -1.90% 

AM Peak (6 AM – 9 AM) Yes  -1.64% 0.76% 1.05% 0.11% -0.28% 

PM Peak (4 PM – 7 PM) Yes -1.27% 0.12% -0.21% 0.33% 0.36% 

Police Presence Yes -4.05% 0.30% 1.79% 0.19% 1.00% 

Towing Presence Yes -0.41% 0.07% 0.51% -0.79% 0.93% 

Urban Yes 3.65% 1.85% -0.02% -0.38% -4.95% 

Incident Subtype 

Disabled Veh. - Base  - - - - - 

Minor Crash -1.17% -3.50% -0.98% 2.04% 2.48% 

Moderate Crash -4.36% -3.57% 1.00% 1.54% 4.63% 

Congestion -3.89% 0.19% 2.47% -0.55% 0.96% 

Abandoned Vehicle 2.33% 0.66% -1.48% -0.15% -0.80% 

Major Crash -10.52% -0.17% -0.18% 2.64% 8.62% 

Severity 

Low - Base  - - - - - 

Medium -3.21% -0.79% 2.60% -0.41% 2.06% 

High -5.60% -4.32% 2.64% 2.79% 5.01% 

Number of Lanes 

  

3-4 lanes - Base  - - - - - 

5-6 lanes 0.68% 0.85% 2.17% -0.02% -3.38% 

> 6 lanes 6.07% 1.13% -2.55% -1.58% -4.36% 

AADT 

(0-20000] - Base  - - - - - 

(20000-40000] 1.46% -1.37% -0.51% -0.03% 0.18% 

(40000-60000] 2.46% 0.90% -0.83% -1.02% -1.53% 

(60000-80000] -0.49% -0.62% -0.05% -1.95% 3.22% 

 

8.3.2 Time at Maximum Queue Length Models 

TABLE 26 demonstrates the marginal effects of variables on the model of time reaches maximum 

queue length. Similar to the content shown in TABLE 4, there are variables with both positive and 

negative values, for instance, AM peak and PM peak ones. It could be deemed that when incidents 

occur at AM peak or PM peak, it is more likely to take less than 10 minutes to reach the maximum 

queue length. On the contrary, it is less likely to have an incident with more than 50 minutes to 

reach the maximum queue length. Besides, the marginal effects of towing presence reveal that 

when towing services have been requested for an incident, that incident is 3% less likely to have 

less than 10 minutes to reach the maximum queue length. From an incident subtype perspective, 

as expected, minor and moderate crash incidents are more likely to take less than 10 minutes to 

reach the maximum queue length but less likely to take more than 50 minutes to reach the 

maximum queue length. Lastly, with the AADT over 60,000 vehicles, it is on average 2% less 

likely to have an incident with less than 10 minutes to reach the maximum queue length. More 

information can be found in TABLE 26 regarding how contributing factors affect the time to reach 

the maximum queue length. 
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TABLE 25 Marginal Effects of Variables on Time at Maximum Queue Length 

Variables Categories 
Average ME for time_queue_max 

1-10 11-20 21-30 31-40 41-50 51-60 

up15bef_5m_mean 

(0-40] - Base  - - - - - - 

(40-50] -1.50% 0.50% 0.88% 0.76% -0.10% -0.03% 

(50-60] -4.06% -0.19% 0.67% 1.06% 1.11% 1.46% 

(60-80] -8.52% -0.20% 0.77% 2.15% 1.28% 4.08% 

up15bef_5m_var 

(0-50] - Base  - - - - - - 

(50-100] 4.18% 0.65% 0.94% 0.05% -2.04% -3.85% 

(100-250] 7.76% 2.25% 0.18% -1.23% -3.27% -5.64% 

>250 4.47% 1.75% 0.71% -0.52% -1.85% -5.01% 

up15bef_3m_mean 

(0-40] - Base  - - - - - - 

(40-50] 0.52% 0.32% 0.03% -0.09% 0.34% -0.56% 

(50-60] -1.71% 0.57% 0.37% 0.26% 0.25% -0.07% 

(60-80] -3.54% -0.06% -0.27% 0.49% 0.83% 1.56% 

up15bef_3m_var 

(0-50] - Base  - - - - - - 

(50-100] 1.00% 0.05% -0.21% 0.08% -0.42% -0.80% 

(100-250] 4.34% 1.06% 0.09% -0.93% -1.63% -2.52% 

>250 1.64% 0.89% -0.11% -0.26% -1.10% -0.98% 

up15bef_1m_mean 

(0-40] - Base  - - - - - - 

(40-50] -0.55% -0.28% 0.15% 0.55% -0.10% 0.19% 

(50-60] 0.37% -0.22% 0.30% 0.13% -0.65% 0.56% 

(60-80] -2.00% -0.13% -0.07% 0.26% 1.03% 1.37% 

up15bef_1m_var 

(0-50] - Base  - - - - - - 

(50-100] 3.57% 1.61% -0.05% -0.79% -1.57% -2.32% 

(100-250] 2.68% 0.36% -0.10% 0.00% -1.15% -1.39% 

>250 3.38% -0.35% -0.24% 0.03% -0.82% -1.20% 

Winter (Dec., Jan., or Feb.) Yes -0.43% 0.59% 0.17% -0.49% 0.22% -0.16% 

Weekday Yes -0.07% -0.59% 0.16% -0.44% 1.21% 0.68% 

AM Peak (6 AM – 9 AM) Yes 1.34% -0.04% 0.06% -0.07% -1.13% -0.43% 

PM Peak (4 PM – 7 PM) Yes 1.31% 0.96% 0.22% 0.19% -0.52% -1.98% 

Police Presence Yes -0.14% 0.31% 0.19% 0.40% 0.01% -0.46% 

Towing Presence Yes -3.39% 0.53% 0.46% 0.88% 1.33% -0.07% 

Urban Yes 0.29% -0.17% -0.31% -0.18% 0.10% -0.02% 

Incident Subtype 

Disabled Veh. - Base  - - - - - - 

Minor Crash 1.96% 0.21% 0.17% -0.58% -0.49% -1.91% 

Moderate Crash 0.21% 2.08% 0.74% 0.38% -0.35% -3.81% 

Congestion 2.18% 1.37% -0.84% -0.32% -0.64% -1.22% 

Abandoned Vehicle -0.62% -0.90% -0.53% 0.13% 0.20% 1.00% 

Major Crash -0.11% 0.64% -0.10% 0.01% 0.57% -1.45% 

Severity 

Low - Base  - - - - - - 

Medium 0.36% 2.44% 0.11% 0.39% -0.63% -2.61% 

High -1.14% 0.70% -0.01% 0.67% 0.54% -0.52% 

Number of Lanes 

3-4 lanes - Base  - - - - - - 

5-6 lanes 0.81% -0.98% -0.45% -0.65% 0.47% 1.22% 

> 6 lanes 0.18% 0.02% -0.12% 0.01% -0.93% 0.91% 

AADT 

(0-20000] - Base  - - - - - - 

(20000-40000] -0.65% 0.21% 0.20% -0.07% 0.17% 0.18% 

(40000-60000] -0.54% 0.45% 0.06% -0.43% 0.05% 0.24% 

(60000-80000] -2.12% -0.10% 0.01% 0.56% 0.78% 1.06% 

 

8.3.3 Spatiotemporal Impact Model 

TABLE 27 illustrates the marginal effects of variables on the model of an incident’s 

spatiotemporal impacts, measured by speed reduction, segment length, and incident time window. 

The content indicates that it is more likely to cause a low congestion severity when an incident’s 

speed (the mean of pre-incident traffic speed (15 minutes before the incident) for 5 miles upstream 

of the incident location) is over 60 mph. As expected, the marginal effects regarding the incident 
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subtype reveal that a major crash incident is more likely to cause a high congestion severity. 

Further, on average, it is 12% less likely to cause a low congestion severity with the AADT over 

60,000 vehicles.  

 

TABLE 26 Marginal Effects of Variables on Volume (Spatiotemporal Impacts) 
  Average ME for volume 

Variables Categories (0-2000] (2000-4000] (4000-6000] (6000-8000] (8000-10000] >10000 

up15bef_5m_mean (0-40] - Base  - - - - - - 

 (40-50] 0.42% -0.31% 3.93% 1.53% -0.43% -3.40% 

 (50-60] -0.12% 13.35% 9.60% -0.62% -4.79% -15.17% 

 (60-80] 21.96% 11.83% -1.95% -4.13% -7.45% -16.24% 

up15bef_5m_var (0-50] - Base  - - - - - - 

 (50-100] -7.74% 6.11% 1.36% -0.09% -0.16% -0.11% 

 (100-250] -10.34% 3.95% -0.39% 1.45% 0.47% 1.74% 

 >250 -9.63% 0.91% 0.25% 0.96% 1.12% 1.78% 

up15bef_3m_mean (0-40] - Base  - - - - - - 

 (40-50] 0.07% -0.20% 1.72% 0.05% 1.68% 0.07% 

 (50-60] -1.44% 5.89% 1.38% 1.50% -0.05% -3.88% 

 (60-80] 15.94% 0.24% -0.73% -1.15% -1.55% -5.05% 

up15bef_3m_var (0-50] - Base  - - - - - - 

 (50-100] -2.08% -0.33% 0.01% 0.18% 0.25% 0.48% 

 (100-250] -2.27% -0.99% -0.33% 0.37% 1.27% 1.16% 

 >250 -3.01% 0.32% -0.02% 0.34% 0.96% 0.71% 

up15bef_1m_mean (0-40] - Base  - - - - - - 

 (40-50] -0.15% -0.31% 0.70% -0.08% 0.01% -0.04% 

 (50-60] -0.85% 1.95% -0.55% -0.05% 0.06% -0.18% 

 (60-80] 3.42% -1.72% -0.03% 0.29% -0.77% -1.03% 

up15bef_1m_var (0-50] - Base  - - - - - - 

 (50-100] -0.03% 0.00% -0.45% 0.14% 0.23% 0.20% 

 (100-250] -0.42% -0.81% 0.18% -0.03% 0.24% 0.48% 

 >250 -3.13% -0.46% 0.18% 0.46% 1.44% 0.83% 

Winter (Dec., Jan., or 

Feb.) Yes 0.59% -0.50% -0.06% -0.07% 0.15% -0.02% 

Weekday Yes -0.42% 0.14% 0.50% -0.16% 0.38% -0.11% 

AM Peak (6 AM – 9 AM) Yes -0.02% -0.33% 0.69% 0.00% -0.15% -0.16% 

PM Peak (4 PM – 7 PM) Yes 0.23% -0.69% 0.00% 14.00% 0.07% 0.11% 

Police Presence Yes -1.63% -0.28% 0.19% 0.00% 0.30% 0.62% 

Towing Presence Yes -0.55% -0.38% -0.22% -0.22% 0.22% 1.00% 

Urban Yes -0.10% 1.08% 0.25% 0.17% -0.17% -1.25% 

Incident Subtype 

Disabled Veh. - 

Base  - - - - - - 

 Minor Crash -0.43% -0.89% -0.92% 0.17% 0.16% 1.76% 

 Moderate Crash -2.01% -0.69% 0.09% 0.07% 0.03% 1.96% 

 Congestion -1.38% 0.09% 1.08% 0.45% 0.57% -0.45% 

 

Abandoned 

Vehicle 1.09% -0.38% 0.28% -0.05% -0.44% -0.34% 

 Major Crash -9.10% -0.69% 1.02% 0.84% 1.28% 3.10% 

Severity Low - Base  - - - - - - 

 Medium -1.72% -0.27% 1.23% -0.16% 0.49% 0.79% 

 High -9.10% 0.58% 2.82% 0.13% 0.40% 3.13% 

Number of Lanes 3-4 lanes - Base  - - - - - - 

 5-6 lanes 1.52% -0.04% -0.22% 0.37% 0.16% -1.22% 

  > 6 lanes 1.06% 1.61% -1.11% -0.25% -0.23% -0.85% 

AADT (0-20000] - Base  - - - - - - 

 (20000-40000] 0.03% -0.53% 0.96% 0.13% 0.28% -0.19% 

 (40000-60000] 1.30% -0.19% -0.45% -0.05% -0.07% 0.32% 

 (60000-80000] -12.07% 8.55% -0.35% -0.15% 1.77% 1.53% 

 

8.3.4 Incident Clearance Time Models 
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Last but not least, TABLE 28 shows the variables' marginal effects on the incident clearance 

time model. Incident clearance time refers to the time between the first response to the incident 

and the time at which the last responder has left the scene. It could be seen from the TABLE that 

as an incident's spatiotemporal impacts increase, the probability of clearance time of more than 

90 minutes goes up dramatically. The presence of police officers or towing services is negatively 

associated with clearance times shorter than 10 minutes but positively associated with more than 

30 minutes of clearance time. The same findings could be found in the marginal effects of crash 

incidents, including minor, moderate, and major crashes. 

 

TABLE 28 TABLE 27Marginal Effects of Variables on Incident Clearance Time Models 
  Average ME for clearance time 

Variables Categories (0-10] (10-20] (20-30] (30-60] (60-90] >90 

volume (0-2000] - Base  - - - - - - 

 (2000-4000] 0.53% -0.09% -0.05% -0.56% 0.07% 0.00% 

 (4000-6000] -0.31% 0.33% -0.16% 0.54% 0.57% 0.76% 

 (6000-8000] 0.44% 0.08% -0.01% 0.03% 0.16% 3.01% 

 (8000-10000] -0.41% -0.24% -0.35% -2.05% 0.59% 2.89% 

  >10000 -0.79% -0.51% -0.70% -2.28% 1.52% 5.00% 

up15bef_5m_mean (0-40] - Base  - - - - - - 

 (40-50] -0.40% -0.47% -0.09% -0.41% 0.12% 0.58% 

 (50-60] -0.77% -0.64% -0.01% -0.57% -0.03% 1.13% 

 (60-80] -1.69% -1.78% -0.85% -0.60% 0.03% 1.37% 

up15bef_5m_var (0-50] - Base  - - - - - - 

 (50-100] 1.09% 0.04% 0.22% 0.10% -0.05% 0.47% 

 (100-250] 1.44% 0.83% 0.28% 0.09% -0.26% -0.10% 

 >250 0.03% 0.43% 0.79% 0.24% 1.24% 0.73% 

up15bef_3m_mean (0-40] - Base  - - - - - - 

 (40-50] 0.04% 0.08% 0.31% 0.18% 0.58% -0.22% 

 (50-60] 0.45% 0.50% 0.44% -0.11% 0.99% 0.11% 

 (60-80] 0.31% -0.46% -0.59% 0.14% 0.57% 0.79% 

up15bef_3m_var (0-50] - Base  - - - - - - 

 (50-100] -0.32% 0.15% 0.33% -0.04% -0.01% 0.38% 

 (100-250] 0.57% 0.30% 0.25% 1.21% -0.11% -0.59% 

 >250 0.08% 0.22% 0.10% 0.96% 0.43% -0.38% 

up15bef_1m_mean (0-40] - Base  - - - - - - 

 (40-50] -0.19% 0.13% 0.46% 0.28% 0.26% -0.20% 

 (50-60] -0.03% 0.02% -0.09% -0.12% -0.06% 0.25% 

 (60-80] 0.00% -0.35% -0.31% -0.29% 0.00% 0.66% 

up15bef_1m_var (0-50] - Base  - - - - - - 

 (50-100] 0.18% -0.19% 0.17% 1.10% -0.25% -0.28% 

 (100-250] -0.59% 0.10% 0.09% 0.47% 0.06% 0.26% 

 >250 -0.91% 0.10% -0.26% 0.18% 0.19% 0.96% 

Winter (Dec., Jan., or Feb.) Yes - Base  - - - - - - 

 No 0.69% 0.73% 0.15% -0.28% -0.15% 0.47% 

Weekday Yes 2.62% 1.86% 0.52% 3.39% 0.70% -2.03% 

AM Peak (6 AM – 9 AM) Yes -3.03% -2.00% -0.21% 0.50% -0.44% -0.52% 

PM Peak (4 PM – 7 PM) Yes 1.50% 1.18% 0.30% 1.65% 0.10% -1.11% 

Police Presence Yes -4.36% 0.25% 1.80% 4.48% 4.00% 0.58% 

Towing Presence Yes -5.80% 0.61% 0.99% 7.30% 5.51% 1.67% 

Urban Yes 0.99% 0.04% -0.02% 0.84% -0.31% -3.46% 

Incident Subtype Disabled Veh. - Base  - - - - - - 

 Minor Crash -7.19% -1.54% 1.10% 8.12% 4.66% 0.60% 

 Moderate Crash -8.82% -3.94% -0.77% 3.35% 2.59% 2.99% 

 Congestion -11.86% -3.53% -0.95% 0.52% 2.86% 7.82% 

 Abandoned Vehicle 4.42% -2.70% -2.82% -6.78% -1.30% 9.96% 

 Major Crash -4.82% -3.08% -1.00% 0.17% 3.07% 5.09% 

Severity Low - Base  - - - - - - 

 Medium -1.28% -1.13% 0.61% 8.42% 2.96% 3.18% 
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 High -6.34% -2.41% -0.27% 1.98% 2.32% 13.20% 

Number of Lanes 3-4 lanes - Base  - - - - - - 

 5-6 lanes -1.07% -0.43% -0.13% -1.28% -0.30% -0.10% 

  > 6 lanes -1.99% -0.47% 0.00% -0.28% -0.68% -0.70% 

AADT (0-20000] - Base  - - - - - - 

 (20000-40000] 0.52% 0.39% 0.27% 0.17% -0.03% -1.11% 

 (40000-60000] 1.81% -0.05% 0.33% 2.32% -0.65% -4.44% 

 (60000-80000] 6.82% 3.38% 1.73% 1.06% 0.13% -3.98% 

 

8.4 Summary and Conclusion 

To support Traffic Incident Management (TIM), research is critical to understand the relationships 

between the contributing factors and spatiotemporal impacts of traffic incidents. Unlike previous 

studies that relied on loop detector data from limited sites, the team exploited a large-scale 

network-wide crowdsourced probe vehicle data to investigate the traffic impacts of freeway 

incidents. The team created three queueing-related metrics, including the maximum queue length, 

time at the maximum queue length, and volume (spatiotemporal extent of a queue) to measure 

traffic incident impacts. The probe vehicle data is linked to traffic incidents and crash data to obtain 

the characteristics of traffic incidents. Other key factors, such as incident context and road 

environment, were retrieved from the incident database and HPMS data. To reduce the estimation 

bias from any single model, the team trained five machine learning models, including Categorical 

Naive Bayes (CNB), Support vector machine (SVM), Random Forest (RF), AdaBoost (Boost), 

and Neural network (NN), to interpret the nonlinear relationships between queueing-related 

metrics and relevant features. In total, 8,178 incidents that occurred on freeways in Alabama were 

analyzed. In addition, this research computed the marginal effects to quantify the magnitude of 

independent variables to gain insights into how contributing factors affect the spatiotemporal 

impacts of traffic incidents. 

 

The modeling results indicate that three queueing-related metrics describing the spatiotemporal 

impacts of traffic incidents are highly correlated to traffic dynamics on freeways. The incident 

context and road environment are found to be important contributing factors influencing incident 

congestion and clearance time. The team extends the understanding of traffic incident impact 

correlates from a network-wide aspect, providing valuable insights for developing effective traffic 

and incident management strategies by using emerging crowdsourcing probe vehicle data.  
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9. Injury Severity Modeling 
9.1 Variable Creation 

Using the Python speed extraction tool we developed before, we extracted two kinds of speed 

information from HERE as shown below. The speed information was linked to the corresponding 

crash records. 

• here_speed_0: the speed of the crash location at the recorded crash time  

• here_speed_1: the speed of the crash location before the maximum speed drops within 20 

minutes before the recorded crash time.  

 

The distributions of here_speed_0 and here_speed_1 are shown in FIGURE 30 (i) & (ii), 

respectively. We coded the data from the CARE crash database and HERE speed database into the 

categorical variables for inputting them into the Ordered Logistic Modeling. The descriptive 

statistics of the modeling variables are shown below in TABLE 29. 

 

  
(i)  Histogram of here_speed_0 (ii)  Histogram of here_speed_1 

 

FIGURE 30 Histogram of HERE speed variables 

 

TABLE 28 Descriptive statistics of the modeling variables. 

(i) Speed-related Variables 
Variables Frequency Percentage Variables Frequency Percentage 

   speed_report 

00mph     57 0.77% 

   

speed_here_1 

00mph     27 0.36% 

01to05mph 96 1.30% 01to05mph 52 0.70% 

06to10mph 76 1.03% 06to10mph 97 1.31% 

11to15mph 68 0.92% 11to15mph 111 1.50% 

16to20mph 95 1.28% 16to20mph 102 1.38% 

21to25mph 63 0.85% 21to25mph 87 1.17% 

26to30mph 100 1.35% 26to30mph 105 1.42% 

31to35mph 99 1.34% 31to35mph 134 1.81% 

36to40mph 138 1.86% 36to40mph 132 1.78% 

41to45mph 188 2.54% 41to45mph 146 1.97% 

46to50mph 202 2.73% 46to50mph 156 2.11% 

51to55mph 248 3.35% 51to55mph 238 3.21% 

56to60mph 447 6.04% 56to60mph 418 5.64% 

61to65mph 747 10.09% 61to65mph 954 12.88% 

66to70mph 2069 27.94% 66to70mph 2143 28.94% 

71to75mph 373 5.04% 71to75mph 1991 26.88% 

75+mph    377 5.09% 75+mph    513 6.93% 

unknown   1963 26.51%    speed_limit 06to10mph 1 0.01% 
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v2speed_report 

00mph        616 8.32% 16to20mph 2 0.03% 

01to05mph    146 1.97% 21to25mph 3 0.04% 

06to10mph    96 1.30% 36to40mph 6 0.08% 

11to15mph    91 1.23% 41to45mph 72 0.97% 

16to20mph    82 1.11% 46to50mph 162 2.19% 

21to25mph    58 0.78% 51to55mph 144 1.94% 

26to30mph    62 0.84% 56to60mph 303 4.09% 

31to35mph    69 0.93% 61to65mph 699 9.44% 

36to40mph    116 1.57% 66to70mph 621 8.39% 

00041to45mph 108 1.46% 71to75mph 5313 71.74% 

46to50mph    156 2.11% 75+mph    14 0.19% 

51to55mph    163 2.20% unknown   66 0.89% 

56to60mph    288 3.89% 

  

  

  

  

61to65mph    452 6.10% 

66to70mph    824 11.13% 

71to75mph    85 1.15% 

no_v2        2777 37.50% 

unknown      1217 16.43% 

   

speed_here_0 

00mph     30 0.41% 

01to05mph 47 0.63% 

06to10mph 106 1.43% 

11to15mph 100 1.35% 

16to20mph 114 1.54% 

21to25mph 85 1.15% 

26to30mph 85 1.15% 

31to35mph 138 1.86% 

36to40mph 119 1.61% 

41to45mph 135 1.82% 

46to50mph 158 2.13% 

51to55mph 209 2.82% 

56to60mph 451 6.09% 

61to65mph 961 12.98% 

66to70mph 2179 29.42% 

71to75mph 1971 26.61% 

75+mph    518 6.99% 

 

(ii) Non-speed-related Variables. 
Variables Frequency Percentage Variables Frequency Percentage 

 Injury 

severity 

PDO  6557 88.50% 

Lighting 

condition 

Daylight      5070 68.50% 

Possible 288 3.90% Dawn dusk      285 3.80% 

Minor    401 5.40% Dark cont. light 114 1.50% 

Serious  125 1.70% Dark spotlight 399 5.40% 

Fatal    35 0.50% Dark no light   1508 20.40% 

 Age 

18-25   1873 25.30% Other         30 0.40% 

26-35   1615 21.80% 

        

Alignment 

Straight m level 5453 73.60% 

36-45   1209 16.30% Straight down  714 9.60% 

46-55   906 12.20% Straight up    641 8.70% 

56-65   681 9.20% Curve level   248 3.30% 

65+     452 6.10% Curve grade   309 4.20% 

Unknown 670 9.00% Other        41 0.60% 

Gender 

Male   4332 58.50% 

Other 

vehicle 

types 

Passenger car      1950 26.30% 

Female 2462 33.20% SUV                1133 15.30% 

Unknown 612 8.30% Pickup/mini-van     813 11.00% 

Primary 

contributing 

circumstances 

No improper               189 2.55% 
Cargo/passenger  

van 
71 1.00% 

DUI                      167 2.25% Truck/tractor      621 8.40% 

Defective equipment       433 5.85% Other               2818 38.10% 

Distract/Inattention     1021 13.79%   Crash 

manner 

Single vehicle    2653 35.80% 

Close following           1261 17.03% Sideswipe    2638 35.60% 
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Misjudge distance         384 5.18% Sideswipe    1297 17.50% 

Fast                     750 10.13% Head on/Angle 161 2.20% 

Aggressive               96 1.30% Side impact   232 3.10% 

Unsee-obstruct            552 7.45% Other         425 5.70% 

Improper lane  

change       
909 12.27% 

  Location 

On road  5460 73.70% 

Improper 

steering/Swerved 
697 9.41% Median   624 8.40% 

Other                   947 12.79% Offroad  51 0.70% 

 Causal unit 

vehicle type 

Passenger car      3582 48.40% Roadside 707 9.50% 

SUV                1468 19.80% Shoulder 529 7.10% 

Pickup/Mini-van     1299 17.50% Other    35 0.50% 

Cargo/passenger van 102 1.40% 

  

  

  

  

Truck/tractor      955 12.90% 

  Seatbelt  

Fully used     6389 86.30% 

Partially used 13 0.20% 

Not used       167 2.30% 

Other         83 1.10% 

Unknown       754 10.20% 

 

9.2 Crash Severity Models 

We developed models with different speed variables (as shown in TABLE 29) for all crashes and 

single-vehicle crashes. To see how HERE speed data can be used to benefit modeling injured 

severity for freeway crashes, we compare the model goodness-of-fit using McFadden R square.  

 

TABLE 29 Description of the speed variables.  
Speed variable Data source Description 

report_speed CARE crash database 
Estimated speed at the impact that is recorded in the 

CARE database; 

here_speed_0 HERE speed database 
Extracted HERE speed of the crash location at the 

recorded crash time; 

here_speed_1 HERE speed database 
Extracted HERE speed at the crash location before the 

big speed drop prior to the recorded crash time 

speed_var_4 
CARE crash database and 

HERE speed database 

Estimated speed at the impact that is recorded in the 

CARE database with the missing values filled with the 

here_speed_0 

speed_var_5 
CARE crash database and 

HERE speed database 

Estimated speed at the impact that is recorded in the 

CARE database with the missing values filled with the 

here_speed_1 

speed_var_6 CARE crash database 

Estimated speed at the impact that is recorded in the 

CARE database with the missing values filled with the 

speed limit 

 

TABLE 30 shows the model we developed and the corresponding reported McFadden R square 

for all crash types. The results show that Model 5 with speed_var_5 (The estimated speed at the 

impact that is recorded in the CARE database with the missing values filled with the here_speed_1) 

achieves the highest McFadden R square. Based on these results, we suggest replacing the missing 

values in the reported speed with HERE speed at the crash location before the big speed drop 

before the recorded crash time that achieves the highest accuracy. The model estimation results 

are shown in TABLE 31.  
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TABLE 30 Model description from different injured severity models (all crash) 

Model 

number 
Speed variable used Other variables McFadden R square 

1 report_speed 
Driver’s Age, Gender, Primary 

Contributing Circumstances, Causal 

Unit Vehicle Type, Other Vehicle 

Type, Crash Manner, Seatbelt, 

Location, Lighting, Alignment 

0.1370 

2 here_speed_0 0.1206 

3 here_speed_1 0.1231 

4 speed_var_4 0.1361 

5 speed_var_5 0.1372 

6 speed_var_6 0.1369 

 

TABLE 31 Estimation Results for Model 5 (all crashes). 
Variables Coef. Std. Error p value 

Age (Base: 18 - 

25) 

Age 26-35 0.082 0.108 0.445 

Age 36-45 -0.087 0.125 0.484 

Age 46-55 0.245 0.133 0.065 

Age 56-65 0.118 0.152 0.438 

Age 65+ 0.147 0.176 0.401 

Age unknown -1.817 0.745 0.015 

Gender (Base: 

Male) 

Gender female 0.408 0.085 0.000 

Gender unknown -3.062 1.229 0.013 

Primary 

Contributing 

Circumstances 

(Base: No 

improper) 

DUI 0.486 0.335 0.147 

Defective Equipment 0.244 0.302 0.419 

distract/inattention 0.385 0.282 0.172 

Close following -0.373 0.314 0.235 

Misjudge distance 0.217 0.341 0.525 

fast 0.119 0.286 0.677 

aggressive 0.426 0.412 0.301 

Unsee obstruct -0.854 0.338 0.011 

Improper lane change 0.160 0.326 0.623 

Improper steering/Swerved 0.252 0.285 0.378 

other 0.566 0.285 0.047 

Motorist 

Vehicle Type 

(Base: 

Passenger car) 

SUV -0.075 0.102 0.461 

pickup/minivan -0.402 0.126 0.001 

cargo/passenger van 0.267 0.332 0.421 

truck/tractor -0.282 0.166 0.090 

Other Vehicle 

Type (Base: 

Passenger car) 

SUV 0.113 0.162 0.488 

pickup/minivan 0.189 0.176 0.281 

cargo/passenger van 0.493 0.467 0.291 

truck/tractor 1.241 0.160 0.000 

Other 0.807 0.468 0.085 

Crash Manner 

(Base: Single-

vehicle crash) 

sideswipe 0.584 0.338 0.084 

sideswipe -0.707 0.354 0.046 

Head on/angle 0.827 0.343 0.016 

Side impact 0.706 0.359 0.050 

other -0.190 0.305 0.533 

Seatbelt (Base: 

Fully used) 

Partially used 0.902 0.689 0.191 

Not used 2.038 0.169 0.000 

other 0.803 0.590 0.174 
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unknown 0.847 0.193 0.000 

Location (Base: 

on road) 

median 0.397 0.160 0.013 

Off road 0.644 0.369 0.081 

Other 0.748 0.468 0.110 

roadside 0.600 0.151 0.000 

shoulder 0.779 0.152 0.000 

Casual Unit 

Speed_report 

with missing 

information 

filled with 

speed_here_1 

speed_report_update00mph 1.901 0.594 0.001 

speed_report_update06to10mph -1.232 1.119 0.271 

speed_report_update11to15mph 0.594 0.665 0.372 

speed_report_update16to20mph -1.073 0.894 0.230 

speed_report_update21to25mph 0.076 0.732 0.918 

speed_report_update26to30mph -0.014 0.726 0.985 

speed_report_update31to35mph -0.197 0.724 0.786 

speed_report_update36to40mph 0.970 0.585 0.097 

speed_report_update41to45mph 1.172 0.561 0.037 

speed_report_update46to50mph 1.175 0.552 0.033 

speed_report_update51to55mph 1.451 0.533 0.006 

speed_report_update56to60mph 1.673 0.521 0.001 

speed_report_update61to65mph 1.552 0.512 0.002 

speed_report_update66to70mph 1.905 0.508 0.000 

speed_report_update71to75mph 1.762 0.521 0.001 

speed_report_update75+mph 2.530 0.522 0.000 

V2 

Speed_report 

with missing 

information 

filled with 

speed_here_1 

v2speed_report_update00mph -0.233 0.372 0.531 

v2speed_report_update06to10mph -0.912 0.630 0.148 

v2speed_report_update11to15mph -0.078 0.495 0.875 

v2speed_report_update16to20mph 0.087 0.545 0.872 

v2speed_report_update21to25mph 0.225 0.532 0.672 

v2speed_report_update26to30mph -0.344 0.601 0.568 

v2speed_report_update31to35mph -0.294 0.546 0.590 

v2speed_report_update36to40mph -0.860 0.491 0.080 

v2speed_report_update41to45mph -0.421 0.746 0.573 

v2speed_report_update46to50mph -1.367 0.494 0.006 

v2speed_report_update00041to45mph -0.426 0.479 0.374 

v2speed_report_update51to55mph -0.876 0.442 0.047 

v2speed_report_update56to60mph -0.974 0.411 0.018 

v2speed_report_update61to65mph -0.959 0.389 0.014 

v2speed_report_update66to70mph -0.862 0.383 0.024 

v2speed_report_update71to75mph -1.181 0.469 0.012 

v2speed_report_update75+mph -2.490 0.846 0.003 

v2speed_report_updateno_v2 -1.032 0.652 0.114 

Lighting 

condition 

(Base: 

Daylight)  

Dawn dusk -0.292 0.223 0.191 

Dark cont. light 0.380 0.295 0.198 

Dark spotlight 0.530 0.159 0.001 

Dark no light 0.177 0.098 0.071 

Other 0.635 0.593 0.284 

Alignment 

(Base: straight 

level) 

Straight down 0.031 0.133 0.816 

Straight up -0.177 0.147 0.229 

Curve level 0.331 0.193 0.085 

Curve grade 0.158 0.178 0.374 
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Other 0.271 0.445 0.542 

Intercept 

1PDO|2possible 4.130 0.694 0.000 

2possible|3minor 4.656 0.695 0.000 

3minor|4serious 6.099 0.699 0.000 

4serious|5fatal 7.713 0.714 0.000 

Summary 

Statistics 

Number of observations     7406 

AIC   6393.015 

McFadden Pseudo R2     0.137 

 

TABLE 32 shows the model we developed and the corresponding reported McFadden R square 

for single-vehicle crashes. The results show that Model 11 with speed_var_5 (The estimated speed 

at the impact that is recorded in the CARE database with the missing values filled with the 

here_speed_1) achieves the highest McFadden R square. Based on these results, we suggest 

replacing the missing values in the reported speed with HERE speed at the crash location before 

the big speed drop before the recorded crash time that achieves the highest accuracy. The model 

estimation results are shown in TABLE 33.  

 

TABLE 32 Model description from different injured severity models (single vehicle crashes) 
Model 

number 
Speed variable used Other variables 

McFadden R 

square 

7 report_speed Driver’s Age, Gender, Primary 

Contributing Circumstances, Causal Unit 

Vehicle Type, Other Vehicle Type, Crash 

Manner, Seatbelt, Location, Lighting, 

Alignment 

0.095 

8 here_speed_0 0.089 

9 here_speed_1 0.088 

10 speed_var_4 0.097 

11 speed_var_5 0.097 

 

TABLE 33 Estimation Results for Model 11 (single-vehicle crashes) 
Variables Coef. Std. Error p value 

Age (base: 18 - 

25) 

26-35 -0.098 0.156 0.529 

36-45 -0.180 0.173 0.299 

46-55 0.244 0.183 0.181 

56-65 0.220 0.206 0.285 

65+ 0.387 0.230 0.092 

Unknown -1.019 1.149 0.375 

Gender (base: 

male) 

Male 0.258 0.118 0.029 

Unknown -2.589 1.516 0.088 

Primary 

Contributing 

Circumstances 

(Base: No 

improper) 

DUI 0.539 0.399 0.177 

Defective Equipment 0.247 0.335 0.461 

Distract/inattention 0.434 0.317 0.171 

Close following -1.469 1.086 0.176 

Fast 0.119 0.317 0.708 

Aggressive 0.910 0.537 0.090 

Unsee obstruct -1.272 0.407 0.002 

Improper lane change 0.745 0.575 0.195 

Improper steering/Swerved 0.216 0.315 0.494 

Other 0.639 0.324 0.049 

SUV 0.183 0.139 0.186 

Pickup/minivan 0.036 0.171 0.835 
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Motorist Vehicle 

Type (Base: 

Passenger car) 

Cargo/passenger van 0.008 0.522 0.987 

Truck/tractor 0.038 0.230 0.869 

Seatbelt (Base: 

Fully used) 

Partially used 0.675 0.896 0.451 

Not used 1.927 0.215 0.000 

Other -0.453 1.123 0.687 

Unknown 0.498 0.313 0.111 

Location (Base: 

on the road) 

Median 0.315 0.184 0.086 

Offroad 0.651 0.382 0.088 

Other 0.529 0.500 0.290 

Roadside 0.549 0.175 0.002 

Shoulder 0.737 0.185 0.000 

Speed_report 

with missing 

information 

filled with 

speed_here_1 

Speed_report_update41to45mph -1.135 1.200 0.345 

Speed_report_update46to50mph -0.998 0.966 0.301 

Speed_report_update51to55mph 0.503 0.716 0.482 

Speed_report_update56to60mph 0.603 0.668 0.367 

Speed_report_update61to65mph 0.562 0.650 0.387 

Speed_report_update66to70mph 0.939 0.638 0.141 

Speed_report_update71to75mph 0.819 0.654 0.210 

Speed_report_update75+mph 1.510 0.655 0.021 

Lighting 

condition (Base: 

Daylight)  

Dawn dusk -0.587 0.328 0.073 

Dark cont. light 0.283 0.459 0.538 

Dark spotlight 0.443 0.245 0.071 

Dark no light 0.076 0.130 0.557 

Other 0.992 0.757 0.190 

Alignment 

(Base: straight 

level) 

Straight down 0.060 0.176 0.733 

Straight up -0.394 0.219 0.073 

Curve level 0.545 0.221 0.014 

Curve grade 0.112 0.226 0.620 

Other 0.872 0.658 0.185 

Intercept 

PDO | possible 3.291 0.702 0.000 

Possible | minor 3.837 0.703 0.000 

Minor | serious 5.284 0.711 0.000 

Serious | fatal 7.120 0.749 0.000 

Summary 

statistics 

Number of observations     2653 

AIC   3224.563 

McFadden Pseudo R2      0.097 

 

9.3 Summary and Conclusion 

This section replaces the missing reported estimated speed at impact with the speed information 

extracted from HERE speed and compares the modeling results regarding the goodness-of-fit. In 

comparison, we also replace the missing reported estimated speed at impact with the speed limit 

documented in the CARE crash report. The modeling results show that replacing the missing 

reported estimated speed at impact with the speed information extracted from HERE speed can 

improve the goodness of fit of injured severity models.  
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10. Summary and Recommendations 
This report documents the work conducted by the team to take advantage of the existing state-wide 

large-scale database to develop a series of tools and models to assist proactive traffic incident 

management in Alabama. The major tasks completed in this project are as follows: 1) review of 

related work of state practice and scholarly research, 2) data collection and data processing, 3) 

development of crash risk prediction model，5) development of incident detection model, 6) 

development of incident impact model, 7) development of injury severity model. Additionally, the 

real-time spatial-temporal speed extraction tool is also provided in the report. 

 

Specifically, the team makes use of the ALGO traffic incident database, the CARE crash database, 

the HERE traffic database, and the publicly accessible HPMS database. A real-time spatial-

temporal speed extraction tool was created in Python which enables extraction and export of the 

spatial-temporal speed matrix in 0.1 miles * 1-minute resolution given incident/crash unique ID in 

the ALGO/CARE database. Based on the spatial-temporal speed matrix generated for each 

incident/crash, the team created various traffic characteristics variables (e.g., average speed, speed 

variances, upstream and downstream speed differences, etc.) and spatial-temporal speed matrix 

given the predefined time range and spatial coverage. The team also extracted static environmental 

information from the HPMS database to provide supplementary road geometry and land use 

information.  

 

Regarding crash risk prediction, machine learning models are developed to predict the occurrence 

of crashes based on the pre-crash traffic characteristics. We built models for all types of crashes 

and subtypes of crashes. The results show that rear-end crashes are more predictable using the 

traffic characteristics provided by the probe vehicle-based HERE data. The partial dependent plots 

identified the non-linearity between the precrash traffic variable and the crash risk. Specifically， 

according to the estimated partial dependence, the rear-end crash risk is positively related to the 

speed variance and speed reductions. A higher rear-end crash risk is associated with a more 

significant speed variance upstream, and the risk for a rear-end crash increases when the traffic 

speed at this location decreases significantly. Additional work was conducted to map the high-

crashes frequency sites. The results show that, for all-type crash prediction models, generally, 

models for high-density crash freeway segments show better accuracy regardless of the model type. 

No significant improvement is shown for models separated by type.  

 

For automatic incident detection (AID), taking advantage of the spatial and temporal coverage of 

the speed information provided by the HERE data, this project develops the CNN model to detect 

the occurrence of incidents at the state level. The results indicated that AID models detecting the 

occurrence of traffic-impacted incidents have better-predicted accuracy than AID models detecting 

the occurrence of all types of traffic incidents, which implies that incorporating all types of 

incidents into the AID model will weaken the prediction performance of the AID model. For AID 

models that can classify the incident sub-types (crash, congestion, and other traffic-impacted 

incidents), models with a balanced dataset can achieve higher performance compared to models 

without balancing. The mapping results of the incident locations show the spatial uneven 

distribution of the incident location. High-frequency incident segments are identified and provided 

in the report.  
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This report also documents the team’s effort to evaluate the impact of the traffic incident by 

exploring the influence of the occurrence of the incident on the maximum queue length, time of 

the maximum queue, and the drop of the traffic volume within the defined time and space ranges. 

We identified the factors associated with these three metrics. The modeling results indicate that 

three queueing-related metrics describing the spatiotemporal impacts of traffic incidents are highly 

correlated to traffic dynamics on freeways. The incident context and road environment are found 

to be important contributing factors influencing incident congestion and clearance time. The team 

extends the understanding of traffic incident impact correlates from a network-wide aspect, 

providing valuable insights for developing effective traffic and incident management strategies by 

using emerging crowdsourcing probe vehicle data. 

 

Lastly, the team also explored the potential of using the HERE speed information to improve the 

crash severity modeling. The team replaced the missing reported estimated speed at impact with 

the speed information extracted from HERE speed and compared the modeling results regarding 

the goodness of fit. In comparison, we also replace the missing reported estimated speed at impact 

with the speed limit documented in the CARE crash report. The modeling results show that 

replacing the missing reported estimated speed at impact with the speed information extracted 

from HERE speed can improve the goodness of fit of injured severity models. 

 

In the future, more connected vehicle data will become available with higher vehicle concentration 

and wider coverage, and there is more potential to use real-time traffic information to facilitate 

proactive traffic incident management practice. Besides, with the fast development of the artificial 

intelligence model and computation ability, more model types and structures can be tested to 

explore the possibility of facility the traffic incident management practice to prevent the 

occurrence of incidents, speed up the detection of the incidents, and shorten the clearance time of 

the incident.  
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Appendix A 
Speed Extraction Tool in Python code 

##Input crash 

 

import os 

import pandas as pd 

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

os.chdir(r"F:\PHD Project\TIM\Data process\Crash_speed_extract\I-20") 

 

#Event_I-65_Incident_January_North.csv 

#Event_I-65_Crash_January_North.csv 

eventrec = pd.read_csv("2019-2020 ALGO Crash_I20_I59.csv") 

options = ['High', 'Medium'] 

   

# selecting rows based on condition 

eventrec = eventrec.loc[eventrec['Last Severity'].isin(options)] 

 

##Filter road and direction first 

event = eventrec[["Event ID","DateTime","Mile Marker",'Direction','Primary Road','Incident 

Type','Incident Subtype']] 

options = ['Major Crash', 'Overturned Vehicle','Moderate Crash'] 

event = event.loc[event['Incident Subtype'].isin(options)] 

##Notice：Northbound： From < To; Southbound: To < From 

##Notice：Eastbound： From < To; Westbound: To < From 

options = ['East'] 

event = event.loc[event['Direction'].isin(options)] 

event.head() 

 

###Connect to HERE database 

import pyodbc 

[x for x in pyodbc.drivers()] 

driver = "{ODBC Driver 17 for SQL Server}" 

server = "XXX"  # server name 

username = "XXX"  

password = "XXX!"   

database = "XXX"  # database name 

conn = 

pyodbc.connect('DRIVER={};SERVER={};DATABASE={};UID={};PWD={}'.format(drive

r, server, database, username, password)) 

 

"""Function get_record: Input: item in gp; Output speed record in one minute with (-a miles, b 

miles)""" 

 

def get_speed_matrix(speed_TABLE,event_location,a,b): 
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    gp = speed_TABLE.groupby(by = 'tstamp') 

    speed_matrix = pd.DataFrame() 

     

    def get_record(minute): 

        minute = list(minute)[1] 

        minute.reset_index(inplace=True)  

        tmrange = End - Start + 1 

        record = list(np.zeros(tmrange)) 

        for i in range(len(minute)): 

            startp = int(minute.loc[i,"MF"]-Start) 

            endp =  int(minute.loc[i,"MT"]-Start) 

            speed = minute.loc[i,"speed"] 

            for j in range(startp,endp): 

                record[j] = speed 

        event_L = int(round(event_location,1)*10) 

        start_L = event_L - a * 10 - Start 

        end_L = event_L + b * 10 - Start  

        record = record[start_L:end_L+1] 

        return record 

     

    for minute in gp: 

        record = get_record(minute) 

        record = pd.DataFrame([record]) 

        speed_matrix = pd.concat([speed_matrix,record],axis = 0) 

         

    return speed_matrix 

 

""" 

If the speed_matrix is 3 miles before incident - IncidentLc = 3 + 0.1 

Bef, Aft - the spatial range 

""" 

def HDSM(IncidentLc,a,b,ff, speed_matrix): 

    IncidentLc = IncidentLc * 10  

    Bef = int(IncidentLc - a * 10) 

    Aft = int(IncidentLc + b * 10) 

    for i in range(len(speed_matrix)): 

        score = 0 

        for j in range(a, b): 

            score = score + (ff - speed_matrix.iloc[i,j]) 

        speed_matrix.loc[i,"score"] = score 

    return speed_matrix 

 

 

os.chdir(r"F:\PHD Project\TIM\Data process\Crash_speed_extract") 

#Query TMC - Upstream a miles; Downstream b miles; 

# search and change: a = 10,b = 5  
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##Notice：Northbound： From < To; Southbound: To < From 

##Notice：Eastbound： From < To; Westbound: To < From 

#i = i 

for i in range(len(event)): 

    record = event.iloc[i] 

    event_ID = record["Event ID"] 

    Incident_type = record["Incident Type"] 

    Incident_Subtype = record["Incident Subtype"] 

    event_location = record["Mile Marker"] 

    a = 10   #Upper bound - 10 miles before 

    b = 5   #Lower bound - 5 miles after 

    Upmm = str(round(record["Mile Marker"]-a,2)) 

    Dnmm = str(round(record['Mile Marker']+b,2)) 

     

    if float(Upmm) < 0: 

        continue 

    sql = "select 

Id,ROAD_NUM ,ROAD_DIR,GeometryLength,MeasureAscending,MeasureFrom ,MeasureT

o from InterstateRouteGeometry where ROAD_NUM='I-65' and ROAD_DIR = 'Northbound'" 

    TMC =  pd.read_sql_query(sql, conn)    

    Maxmm = TMC["MeasureTo"].max() 

    if float(Dnmm) > Maxmm: 

        continue 

     

    sql = "select 

Id,ROAD_NUM ,ROAD_DIR,GeometryLength,MeasureAscending,MeasureFrom ,MeasureT

o from InterstateRouteGeometry where ROAD_NUM='I-65' and ROAD_DIR = 'Northbound' 

and MeasureFrom <= "+ Upmm + " and MeasureTo >= "+ Upmm + "order by MeasureTo" 

    UpTMC = pd.read_sql_query(sql, conn) 

    sql = "select 

Id,ROAD_NUM ,ROAD_DIR,GeometryLength,MeasureAscending,MeasureFrom ,MeasureT

o from InterstateRouteGeometry where ROAD_NUM='I-65' and ROAD_DIR = 'Northbound' 

and MeasureFrom <= "+ Dnmm + " and MeasureTo >= "+ Dnmm + "order by MeasureTo" 

    DnTMC = pd.read_sql_query(sql, conn) 

    Startmm = str(round(UpTMC.loc[0,"MeasureFrom"]-0.01,2)) 

    Endmm = str(round(DnTMC.loc[0,"MeasureFrom"]+0.01,2)) 

     

    ##Query TMC incuding a miles upstream and b miles downstream 

    sql = "select 

Id,ROAD_NUM ,ROAD_DIR,GeometryLength,MeasureAscending,MeasureFrom ,MeasureT

o,_TMC from InterstateRouteGeometry where ROAD_NUM='I-65' and ROAD_DIR = 

'Northbound' and MeasureFrom >= "+ Startmm + " and MeasureFrom <= "+ Endmm + " order 

by MeasureTo" 

    TMC = pd.read_sql_query(sql, conn) 

    TMC["Index"]= [item+1 for item in range(len(TMC))] 

    print(TMC["_TMC"]) 
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    TMC_query = TMC.rename(columns={"_TMC":"TMC"}) 

    TMC_query = TMC_query[["MeasureFrom","MeasureTo","TMC","Index"]] 

     

    ##Query speed including  

    #Spatical range 

    TMCall = "'" + TMC.loc[0,"_TMC"] + "'" 

    for j in range(1,len(TMC)): 

        tem = "'" + TMC.loc[j,"_TMC"] + "'" 

        TMCall = TMCall + ',' + tem 

    print(TMCall) 

    #Temporal range 

    from datetime import datetime 

    TimeStr = record["DateTime"]   ##### 

    Time = datetime.strptime(TimeStr, "%m/%d/%Y %H:%M") 

    #1)Upper bound 

    c = 60  # c minutes before accident 

    d = 60  # d minutes after accident 

    

     

    import datetime 

    TimeUp = Time - datetime.timedelta(minutes = c) 

    from datetime import datetime 

    TimeUp = "'" + datetime.strftime(TimeUp,"%Y-%m-%d %H:%M:%S") + "'" 

    #2)Lower bound 

    import datetime 

    TimeDb = Time + datetime.timedelta(minutes = d) 

    from datetime import datetime 

    TimeDb = "'"+ datetime.strftime(TimeDb,"%Y-%m-%d %H:%M:%S") + "'" 

     

    sql = "select * from speeds where TMC in (" + TMCall + ") and tstamp >=" + TimeUp + " 

and tstamp <= " + TimeDb + "order by tstamp,TMC" 

    speed_Query = pd.read_sql_query(sql, conn) 

    if len(speed_Query) == 0: 

        continue    

     

    speed_TABLE = speed_Query.merge(TMC_query,on="TMC",how = 'left') 

    speed_TABLE.sort_values(by=['tstamp','Index'],inplace=True) 

    ##Update MeasureFrom，Measure To consider dynamic sub-segment 

    speed_TABLE.fillna(0,inplace=True) 

    speed_TABLE["MeasureFrom"] = speed_TABLE["MeasureFrom"] + 

speed_TABLE["offset"] 

     

    ##when sub_len != 0 --> Dynamic sub-segment 

    speed_TABLE.loc[speed_TABLE["sub_len"]!= 0,"MeasureTo"] = 

speed_TABLE.loc[speed_TABLE["sub_len"]!= 0,"MeasureFrom"] + 

speed_TABLE.loc[speed_TABLE["sub_len"]!= 0,"sub_len"] 
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    ##Set 0.1 mile as slice 

    speed_TABLE["MF"]=round(speed_TABLE["MeasureFrom"],1)*10 

    speed_TABLE["MT"]=round(speed_TABLE["MeasureTo"],1)*10 

     

     

    ##Speed matrix 

    ##Initialization 

    Start = int(speed_TABLE["MF"].min()) 

    End = int(speed_TABLE["MT"].max()) 

     

    ##Get speed_matrix 

    speed_matrix = get_speed_matrix(speed_TABLE,event_location,a = 10,b = 5) 

     

    ##Visulization 

    speed_matrix.index = list(range(-c,len(speed_matrix)-c)) 

    speed_matrix.columns = list(range(-a*10,len(-speed_matrix.columns)-a*10)) 

    fig,ax=plt.subplots(1,1,figsize=(12,6)) 

    Ftitile = str(event_ID) + '_' + Incident_type + '_' + Incident_Subtype + ' at Mile Marker ' + 

str(event_location) + ' ' + TimeStr  

    plt.title(Ftitile) #FIGURE titile 

    sns.heatmap(speed_matrix,cmap='YlOrRd_r', vmin=20, vmax=80) 

    plt.xlabel("Distance (Unit:0.1 mile)")  

    plt.ylabel("Time (Unit: 1 minute)")  

    plt.scatter(x = 50, y = 30, marker="+",color = 'k',s = 180,label = "Crash",linewidths = 3) 

    plt.legend() 

    filename = Incident_type + '_' + Incident_Subtype + '_' + 'Speed_matrix_for_Event_'+ 

str(event_ID) +'.png' 

    fig.savefig(filename) 

    plt.clf() # to save memory 

     

    ##Calculate SDMH score 

    speed_matrix.reset_index(inplace=True) 

    speed_matrix = HDSM(IncidentLc=10.1,a = 10,b = 5,ff=70,speed_matrix = speed_matrix) 

     

    ##Save to csv 

    file_name = Incident_type + '_' + Incident_Subtype + '_' + 'Speed_matrix_for_event'+ 

str(event_ID) + '.csv' 

    speed_matrix.to_csv(file_name) 
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